Skip to main content

Advertisement

Log in

Green tissue-specific co-expression of chitinase and oxalate oxidase 4 genes in rice for enhanced resistance against sheath blight

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Green tissue-specific simultaneous overexpression of two defense-related genes ( OsCHI11 & OsOXO4 ) in rice leads to significant resistance against sheath blight pathogen ( R. solani ) without distressing any agronomically important traits.

Overexpressing two defense-related genes (OsOXO4 and OsCHI11) cloned from rice is effective at enhancing resistance against sheath blight caused by Rhizoctonia solani. These genes were expressed under the control of two different green tissue-specific promoters, viz. maize phosphoenolpyruvate carboxylase gene promoter, PEPC, and rice cis-acting 544-bp DNA element, immediately upstream of the D54O translational start site, P D54O544 . Putative T0 transgenic rice plants were screened by PCR and integration of genes was confirmed by Southern hybridization of progeny (T1) rice plants. Successful expression of OsOXO4 and OsCHI11 in all tested plants was confirmed. Expression of PR genes increased significantly following pathogen infection in overexpressing transgenic plants. Following infection, transgenic plants exhibited elevated hydrogen peroxide levels, significant changes in activity of ROS scavenging enzymes and reduced membrane damage when compared to their wild-type counterpart. In a Rhizoctonia solani toxin assay, a detached leaf inoculation test and an in vivo plant bioassay, transgenic plants showed a significant reduction in disease symptoms in comparison to non-transgenic control plants. This is the first report of overexpression of two different PR genes driven by two green tissue-specific promoters providing enhanced sheath blight resistance in transgenic rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

OA:

Oxalic acid

OXO:

Oxalate oxidase

ROS:

Reactive oxygen species

WT:

Wild type

PDI:

Percentage disease index

DPI:

Days post-infection

PDA:

Potato dextrose agar

APX:

Ascorbate peroxidase

POD:

Peroxidase

SOD:

Superoxide dismutase

CAT:

Catalase

MDA:

Malondialdehyde

References

  • Asao H, Nishizawa Y, Arai S, Sato T, Hirai M, Yoshida K (1997) Enhanced resistance against a fungal pathogen Sphaerotheca humuli in transgenic strawberry expressing a rice chitinase gene. Plant Biotechnol 14:145–149

    Article  CAS  Google Scholar 

  • Bateman D, Beer S (1965) Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis by Sclerotium rolfsii. Phytopathology 55:11

    Google Scholar 

  • Bechtold U, Richard O, Zamboni A, Gapper C, Geisler M, Pogson B, Karpinski S, Mullineaux PM (2008) Impact of chloroplastic-and extracellular-sourced ROS on high light-responsive gene expression in Arabidopsis. J Exp Bot 59:121–133

    Article  PubMed  CAS  Google Scholar 

  • Benhamou N, Broglie K, Broglie R, Chet I (1993) Antifungal effect of bean endochitinase on Rhizoctonia solani: ultrastructural changes and cytochemical aspects of chitin breakdown. Can J Microbiol 39:318–328

    Article  PubMed  CAS  Google Scholar 

  • Berna A, Bernier F (1999) Regulation by biotic and abiotic stress of a wheat germin gene encoding oxalate oxidase, a H2O2-producing enzyme. Plant Mol Biol 39:539–549

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chern M, Fitzgerald HA, Canlas PE, Navarre DA, Ronald PC (2005) Overexpression of a rice NPR1 homolog leads to constitutive activation of defense response and hypersensitivity to light. Mol Plant-Microbe Interact 18:511–520

    Article  PubMed  CAS  Google Scholar 

  • Datta K, Velazhahan R, Oliva N, Ona I, Mew T, Khush G, Muthukrishnan S, Datta SK (1999) Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor Appl Genet 98:1138–1145

    Article  CAS  Google Scholar 

  • Datta K, Koukolikova-Nicola Z, Baisakh N, Oliva N, Datta SK (2000) Agrobacterium-mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems. Theor Appl Genet 100:832–839

    Article  CAS  Google Scholar 

  • Datta K, Tu J, Oliva N, Ona I, Velazhahan R, Mew TW, Muthukrishnan S, Datta SK (2001) Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci 160:405–414

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Donaldson PA, Anderson T, Lane BG, Davidson AL, Simmonds DH (2001) Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotina sclerotiorum. Physiol Mol Plant Pathol 59:297–307

    Article  CAS  Google Scholar 

  • Dong X, Ji R, Guo X, Foster SJ, Chen H, Dong C, Liu Y, Hu Q, Liu S (2008) Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Planta 228:331–340

    Article  PubMed  CAS  Google Scholar 

  • Dumas B, Freyssinet G, Pallett KE (1995) Tissue-specific expression of Germin-like oxalate oxidase during development and fungal infection of barley seedlings. Plant Physiol 107:1091–1096

    PubMed  PubMed Central  CAS  Google Scholar 

  • Emani C, Garcia JM, Lopata-Finch E, Pozo MJ, Uribe P, Kim DJ (2003) Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotechnol J 1:321–336

    Article  PubMed  CAS  Google Scholar 

  • Ferrar PH, Walker JRL (1993) o-Diphenol oxidase inhibition-an additional role for oxalic acid in the phytopathogenic arsenal of Sclerotinia sclerotiorum and Sclerotium rolfsii. Physiol Mol Plant Pathol 43:415–422

    Article  CAS  Google Scholar 

  • Ganguly M, Molla KA, Karmakar S, Datta K, Datta SK (2014) Development of pod borer-resistant transgenic chickpea using a pod-specific and a constitutive promoter-driven fused cry1Ab/Ac gene. Theor Appl Genet 127:2555–2565

    Article  PubMed  CAS  Google Scholar 

  • Ghasimi Hagh Z, Rahnama H, Panahandeh J, Baghban Kohneh Rouz B, Arab Jafari K, Mahna N (2009) Green-tissue-specific, C4-PEPC-promoter-driven expression of Cry1Ab makes transgenic potato plants resistant to tuber moth (Phthorimaea operculella, Zeller). Plant Cell Rep 28:1869–1879

    Article  PubMed  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiol 59:315–318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hammond-Kosack KE, Harrison K, Jones J (1994) Developmentally regulated cell death on expression of the fungal avirulence gene Avr9 in tomato seedlings carrying the disease-resistance gene Cf-9. Proc Nat Acad Sci 91:10445–10449

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hodges DM, DeLong JM, Forney CF, Prange RK (1999) Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604–611

    Article  CAS  Google Scholar 

  • Hsu S, Lockwood J (1975) Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. App Microbiol 29:422–426

    CAS  Google Scholar 

  • Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O, Lu G (2003) Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol 133:170–181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang G (1997) Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet 95:313–320

    Article  CAS  Google Scholar 

  • IRRI (2002) Standard evaluation system for rice (SES). International Rice Research Institute, Manila

    Google Scholar 

  • Jach G, Görnhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8:97–109

    Article  PubMed  CAS  Google Scholar 

  • Kalpana K, Maruthasalam S, Rajesh T, Poovannan K, Kumar KK, Kokiladevi E, Raja JA, Sudhakar D, Velazhahan R, Samiyappan R (2006) Engineering sheath blight resistance in elite indica rice cultivars using genes encoding defense proteins. Plant Sci 170:203–215

    Article  CAS  Google Scholar 

  • Kato M, Shimizu S (1987) Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Can J Bot 65:729–735

    Article  CAS  Google Scholar 

  • Kim J-K, Jang I-C, Wu R, Zuo W-N, Boston RS, Lee Y-H, Ahn I-P, Nahm BH (2003a) Co-expression of a modified maize ribosome-inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight. Transgenic Res 12:475–484

    Article  PubMed  CAS  Google Scholar 

  • Kim KJ, Yang YJ, Kim JG (2003b) Purification and characterization of chitinase from Streptomyces sp. M-20. J Biochem Mol Biol 36:185–189

    Article  PubMed  CAS  Google Scholar 

  • Kochba J, Lavee S, Spiegel-Roy P (1977) Differences in peroxidase activity and isoenzymes in embryogenic and non-embryogenic ‘Shamouti’ orange ovular callus lines. Plant Cell Physiol 18:463–467

    CAS  Google Scholar 

  • Kumar KK, Poovannan K, Nandakumar R, Thamilarasi K, Geetha C, Jayashree N (2003) A high throughput functional expression assay system for a defense gene conferring transgenic resistance on rice against the sheath blight pathogen, Rhizoctonia solani. Plant Sci 165:969–976

    Article  CAS  Google Scholar 

  • Lane BG (1994) Oxalate, germin, and the extracellular matrix of higher plants. FASEB J 8:294–301

    PubMed  CAS  Google Scholar 

  • Lane B (2000) Oxalate oxidases and differentiating surface structure in wheat: germins. Biochem J 349:309–321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang H, Maynard C, Allen R, Powell W (2001) Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Mol Biol 45:619–629

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Anuratha C, Datta K, Potrykus I, Muthukrishnan S, Datta SK (1995) Genetic engineering of rice for resistance to sheath blight. Nat Biotechnol 13:686–691

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Mao B, Liu X, Hu D, Li D (2014) Co-expression of RCH10 and AGLU1 confers rice resistance to fungal sheath blight Rhizoctonia solani and blast Magnorpathe oryzae and reveals impact on seed germination. World J Microbiol Biotechnol 30:1229–1238

    Article  PubMed  CAS  Google Scholar 

  • Marciano P, Di Lenna P, Magro P (1983) Oxalic acid, cell wall-degrading enzymes and pH in pathogenesis and their significance in the virulence of two Sclerotinia sclerotiorum isolates on sunflower. Physiol Plant Pathol 22:339–345

    Article  CAS  Google Scholar 

  • Maruthasalam S, Kalpana K, Kumar KK, Loganathan M, Poovannan K, Raja JAJ (2007) Pyramiding transgenic resistance in elite indica rice cultivars against the sheath blight and bacterial blight. Plant Cell Rep 26:791–804

    Article  PubMed  CAS  Google Scholar 

  • Métraux JP, Raskin I (1993) Role of phenolics in plant disease resistance. In: Chet I (ed) Biotechnology in plant disease control. Wiley, New York, pp 191–209

    Google Scholar 

  • Meyer P, Saedler H (1996) Homology-dependent gene silencing in plants. Annu Rev Plant Biol 47:23–48

    Article  CAS  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Molla KA, Karmakar S, Chanda PK, Ghosh S, Sarkar SN, Datta SK, Datta K (2013) Rice oxalate oxidase gene driven by green tissue-specific promoter increases tolerance to sheath blight pathogen (Rhizoctonia solani) in transgenic rice. Mol Plant Pathol 14:910–922

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Muthukrishnan S, Liang GH, Trick HN, Gill BS (2001) Pathogenesis-related proteins and their genes in cereals. Plant Cell, Tissue Organ Cult 64:93–114

    Article  CAS  Google Scholar 

  • Nagarajkumar M, Jayaraj J, Muthukrishnan S, Bhaskaran R, Velazhahan R (2005) Detoxification of oxalic acid by Pseudomonas fluorescens strain PfMDU2: implications for the biological control of rice sheath blight caused by Rhizoctonia solani. Microbiol Res 160(3):291–298

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nishizawa Y, Nishio Z, Nakazono K, Soma M, Nakajima E, Ugaki M (1999) Enhanced resistance to blast (Magnaporthe grisea) in transgenic Japonica rice by constitutive expression of rice chitinase. Theor Appl Genet 99:383–390

    Article  PubMed  CAS  Google Scholar 

  • Paranidharan V, Palaniswami A, Vidhyasekaran P, Velazhahan R (2003) Induction of enzymatic scavengers of active oxygen species in rice in response to infection by Rhizoctonia solani. Acta Physiol Plant 25:91–96

    Article  CAS  Google Scholar 

  • Shah JM, Singh R, Veluthambi K (2013) Transgenic rice lines constitutively co-expressing tlp-D34 and chi11 display enhancement of sheath blight resistance. Biol Plant 57:351–358

    Article  CAS  Google Scholar 

  • Sridevi G, Parameswari C, Sabapathi N, Raghupathy V, Veluthambi K (2008) Combined expression of chitinase and β-1, 3-glucanase genes in indica rice (Oryza sativa L.) enhances resistance against Rhizoctonia solani. Plant Sci 175:283–290

    Article  CAS  Google Scholar 

  • Sripriya R, Raghupathy V, Veluthambi K (2008) Generation of selectable marker-free sheath blight resistant transgenic rice plants by efficient co-transformation of a cointegrate vector T-DNA and a binary vector T-DNA in one Agrobacterium tumefaciens strain. Plant Cell Rep 27:1635–1644

    Article  PubMed  CAS  Google Scholar 

  • Tabei Y, Kitade S, Nishizawa Y, Kikuchi N, Kayano T, Hibi T (1998) Transgenic cucumber plants harboring a rice chitinase gene exhibit enhanced resistance to gray mold (Botrytis cinerea). Plant Cell Rep 17:159–164

    Article  CAS  Google Scholar 

  • Taheri P, Gnanamanickam S, Höfte M (2007) Characterization, genetic structure, and pathogenicity of Rhizoctonia spp. associated with rice sheath diseases in India. Phytopathology 97:373–383

    Article  PubMed  CAS  Google Scholar 

  • Vidhyasekaran P, Ponmalar TR, Samiyappan R, Velazhahan R, Vimala R, Ramanathan A (1997) Host-specific toxin production by Rhizoctonia solani, the rice sheath blight pathogen. Phytopathology 87:1258–1263

    Article  PubMed  CAS  Google Scholar 

  • Walz A, Zingen-Sell I, Loeffler M, Sauer M (2008) Expression of an oxalate oxidase gene in tomato and severity of disease caused by Botrytis cinerea and Sclerotinia sclerotiorum. Plant Pathol 57:453–458

    Article  CAS  Google Scholar 

  • Wan X, Tan J, Lu S, Lin C, Hu Y, Guo Z (2009) Increased tolerance to oxidative stress in transgenic tobacco expressing a wheat oxalate oxidase gene via induction of antioxidant enzymes is mediated by H2O2. Physiol Plant 136:30–44

    Article  PubMed  CAS  Google Scholar 

  • Wargo PM (1975) Lysis of the cell wall of Armillaria mellea by enzymes from forest trees. Physiol Plant Pathol 5:99–105

    Article  CAS  Google Scholar 

  • Wirth SJ, Wolf GA (1990) Dye-labelled substrates for the assay and detection of chitinase and lysozyme activity. J Microbiol Methods 12:197–205

    Article  CAS  Google Scholar 

  • Yamamoto T, Iketani H, Ieki H, Nishizawa Y, Notsuka K, Hibi T (2000) Transgenic grapevine plants expressing a rice chitinase with enhanced resistance to fungal pathogens. Plant Cell Rep 19:639–646

    Article  CAS  Google Scholar 

  • Yang J, Tiwari JP, Verma PR (1993) Calcium oxalate crystal formation in Rhizoctonia solani AG 2-1 culture and infected crucifer tissue-relationship between host calcium and resistance. Mycol Res 97:1516–1522

    Article  CAS  Google Scholar 

  • Zhang Z, Yang J, Collinge D, Thordal-Christensen H (1996) Ethanol increases sensitivity of oxalate oxidase assays and facilitates direct activity staining in SDS gels. Plant Mol Biol Rep 14:266–272

    Article  CAS  Google Scholar 

  • Zhang J, Peng Y, Guo Z (2008) Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Res 18:508–521

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Department of Biotechnology (DBT), Government of India. Kutubuddin Ali Molla is thankful to Council of Scientific and Industrial Research (CSIR) for fellowship. Financial assistance from Indian Council of Agricultural Research (ICAR), Government of India is also acknowledged. Thanks to Dr G.S. Laha for providing R. solani isolates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karabi Datta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmakar, S., Molla, K.A., Chanda, P.K. et al. Green tissue-specific co-expression of chitinase and oxalate oxidase 4 genes in rice for enhanced resistance against sheath blight . Planta 243, 115–130 (2016). https://doi.org/10.1007/s00425-015-2398-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2398-x

Keywords

Navigation