Skip to main content
Log in

DArT-based characterisation of genetic diversity in a Miscanthus collection from Poland

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Analysis of 180 accessions of Miscanthus using a DArT platform revealed high diversity. The phylogenetic analysis revealed that M. × giganteus accessions fall into two genetically distinct groups.

Miscanthus is a genus of perennial rhizomatous grasses that has emerged in last 20 years as a feedstock for bioenergy and biofuel production. Currently, the most widely used accession for bioenergy purposes is Miscanthus × giganteus, a sterile triploid hybrid between Miscanthus sinensis and Miscanthus sacchariflorus. However, previous reports have shown that genetic diversity of Miscanthus × giganteus is limited. Here, we report development of Diversity Arrays Technology platform for the analysis of genetic structure of a Miscanthus collection of 180 accessions. A total of 906 markers were obtained of which around 25.5 % exhibited polymorphism information content value in the range of 0.40 and 0.50 and are considered particularly informative. Newly developed marker system will serve as an additional resource to assist crop improvement, germplasm preservation and genetic studies. Three types of analysis indicated that 180 accessions from the collection were well differentiated and presented high diversity. Interestingly, the analysis revealed that there are two separate groups of plants, significantly differing in genetic diversity, that are commercially available as M. × giganteus. We suggest that one of these groups is most likely mutants or somaclonal variants of original M. × giganteus. The other group is recent hybrids of Miscanthus of higher genetic diversity. This study indicates that the diversity of commercially available M. × giganteus is higher than commonly assumed. Development of the new marker system can significantly assist breeding of new commercial cultivars of Miscanthus for bioenergy use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AMOVA:

Analysis of molecular variance

DArT:

Diversity arrays technology

PCoA:

Principal coordinate analysis

PIC:

Polymorphism information content

RAD-seq:

Restriction site associated DNA sequencing

UPGMA:

Unweighted pair group method with algorithmic mean

References

  • Atienza S, Satovic Z, Petersen K, Dolstra O, Martin A (2002) Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers. Theor Appl Genet 105:946–952

    Article  CAS  PubMed  Google Scholar 

  • Castillo A, Ramírez MC, Martín AC, Kilian A, Martín A, Atienza SG (2013) High-throughput genotyping of wheat-barley amphiploids utilising diversity array technology (DArT). BMC Plant Biol 13:87

    Article  PubMed Central  PubMed  Google Scholar 

  • Chiang YC, Chou CH, Lee PR, Chiang TY (2001) Detection of leaf-associated fungi based on PCR and nucleotide sequence of the ribosomal internal transcribed spacer (ITS) in Miscanthus. Bot Bull Acad Sinica 42:39–44

    CAS  Google Scholar 

  • Chouvarine P, Cooksey AM, McCarthy FM, Ray DA, Baldwin BS, Burgess SC, Peterson DG (2012) Transcriptome-based differentiation of closely-related Miscanthus lines (transcriptome-based differentiation of Miscanthus). PLoS One 7:e29850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Kjeldsen JB, Jorgensen U, Mortensen JV, Riche AB, Schwarz KU, Tayebi K, Teixeira F (2001) Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 93:1013–1019

    Article  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Dominguez-Garcia MC, Belaj A, De la Rosa R, Satovic Z, Heller-Uszynska K, Kilian A, Martin A, Atienza SG (2012) Development of DArT markers in olive (Olea europaea L.) and usefulness in variability studies and genome mapping. Sci Hortic 136:50–60

    Article  CAS  Google Scholar 

  • Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Głowacka K, Clark LV, Adhikari S, Peng J, Ryan Stewart J, Nishiwaki A, Yamada T, Jørgensen U, Hodkinson TR, Gifford J (2015) Genetic variation in Miscanthus × giganteus and the importance of estimating genetic distance thresholds for differentiating clones. GCB Bioenergy 7:386–404

    Article  Google Scholar 

  • Greef J, Deuter M (1993) Syntaxonomy of Miscanthus × giganteus Greef et Deu. Angew Bot 67:87–90

    Google Scholar 

  • Greef J, Deuter M, Jung C, Schondelmaier J (1997) Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genet Resour Crop Ev 44:185–195

    Article  Google Scholar 

  • Grzebelus D, Iorizzo M, Senalik D, Ellison S, Cavagnaro P, Macko-Podgorni A, Heller-Uszynska K, Kilian A, Nothnagel T, Allender C (2014) Diversity, genetic mapping, and signatures of domestication in the carrot (Daucus carota L.) genome, as revealed by Diversity Arrays Technology (DArT) markers. Mol Breeding 33:625–637

    Article  CAS  Google Scholar 

  • Hauser LA, Crovello TJ (1982) Numerical analysis of generic relationships in Thelypodieae (Brassicaceae). Syst Bot 7:249–268

    Article  Google Scholar 

  • Heaton EA, Dohleman FG, Long SP (2008a) Meeting US biofuel goals with less land: the potential of Miscanthus. Glob Change Biol 14:2000–2014

    Article  Google Scholar 

  • Heaton EA, Flavell RB, Mascia PN, Thomas SR, Dohleman FG, Long SP (2008b) Herbaceous energy crop development: recent progress and future prospects. Curr Opin Biotech 19:202–209

    Article  CAS  PubMed  Google Scholar 

  • Heller-Uszynska K, Uszynski G, Huttner E, Evers M, Carlig J, Caig V, Aitken K, Jackson P, Piperidis G, Cox M, Gilmour R, D’Hont A, Butterfield M, Glaszmann JC, Kilian A (2011) Diversity Arrays Technology effectively reveals DNA polymorphism in a large and complex genome of sugarcane. Mol Breed 28:37–55

    Article  CAS  Google Scholar 

  • Hernández P, Dorado G, Laurie D, Martin A, Snape J (2001) Microsatellites and RFLP probes from maize are efficient sources of molecular markers for the biomass energy crop Miscanthus. Theor Appl Genet 102:616–622

    Article  Google Scholar 

  • Hodkinson TR, Chase MW, Lledó DM, Salamin N, Renvoize SA (2002) Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J Plant Res 115:381–392

    Article  CAS  PubMed  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25–e25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • James KE, Schneider H, Ansell SW, Evers M, Robba L, Uszynski G, Pedersen N, Newton AE, Russell SJ, Vogel JC (2008) Diversity arrays technology (DArT) for pan-genomic evolutionary studies of non-model organisms. PLoS One 3:e1682

    Article  PubMed Central  PubMed  Google Scholar 

  • Jeżowski S (2008) Yield traits of six clones of Miscanthus in the first 3 years following planting in Poland. Ind Crops Prod 27:65–68

    Article  Google Scholar 

  • Jeżowski S, Glowacka K, Kaczmarek Z (2009) Wstępna ocena głównych parametrów wymiany gazowej związanych z fotosyntezą w odniesieniu do plonowania traw energetycznych z rodzaju Miscanthus w pierwszym roku uprawy. Acta Agrophysica 14:73–81

    Google Scholar 

  • Jeżowski S, Głowacka K, Kaczmarek Z (2011) Variation on biomass yield and morphological traits of energy grasses from the genus Miscanthus during the first years of crop establishment. Biomass Bioenergy 35:814–821

    Article  Google Scholar 

  • Jones MB, Finnan J, Hodkinson TR (2015) Morphological and physiological traits for higher biomass production in perennial rhizomatous grasses grown on marginal land. GCB Bioenergy 7:375–385

    Article  Google Scholar 

  • Kilian A, Wenzl P, Huttner E, Carling J, Xia L, Blois H, Caig V, Heller-Uszynska K, Jaccoud D, Hopper C, Aschenbrenner-Kilian M, Evers M, Peng K, Cayla C, Hok P, Uszynski G (2012) Diversity Arrays Technology: a generic genome profiling technology on open platforms. In: Pompanon F, Bonin A (eds) Data production and analysis in population genomics. Humana Press, New York, pp 67–89

    Chapter  Google Scholar 

  • Lee NY (1964a) Taxonomic studies on the genus Miscanthus: anatomical patterns of leaves. Bot Mag Tokyo 77:122–130

    Article  Google Scholar 

  • Lee NY (1964b) Taxonomic studies on the genus Miscanthus: relationships among the section, subsection and species, part 1. J Jpn Bot 39:196–205

    Google Scholar 

  • Lee NY (1964c) Taxonomic studies on the genus Miscanthus: relationships among the section, subsection and species, part 2. J Jpn Bot 39:257–268

    Google Scholar 

  • Lee NY (1964d) Taxonomic studies on the genus Miscanthus: relationships among the section, subsection and species, part 3. J Jpn Bot 39:289–298

    Google Scholar 

  • Lewandowski I, Clifton-Brown JC, Andersson B, Basch G, Christian DG, Jorgensen U, Jones MB, Riche AB, Schwarz KU, Tayebi K, Teixeira F (2003) Environment and harvest time affects the combustion qualities of Miscanthus genotypes. Agron J 95:1274–1280

    Article  Google Scholar 

  • Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian A (2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC Genom 9:26

    Article  Google Scholar 

  • Matlaga DP, Davis AS (2013) Minimizing invasive potential of Miscanthus × giganteus grown for bioenergy: identifying demographic thresholds for population growth and spread. J App Ecol 50:479–487

    Article  Google Scholar 

  • Mos M, Banks SW, Nowakowski DJ, Robson PRH, Bridgwater AV, Donnison IS (2013) Impact of Miscanthus × giganteus senescence times on fast pyrolysis bio-oil quality. Bioresour Technol 129:335–342

    Article  CAS  PubMed  Google Scholar 

  • Oliver R, Jellen E, Ladizinsky G, Korol A, Kilian A, Beard J, Dumlupinar Z, Wisniewski-Morehead N, Svedin E, Coon M (2011) New Diversity Arrays Technology (DArT) markers for tetraploid oat (Avena magna Murphy et Terrell) provide the first complete oat linkage map and markers linked to domestication genes from hexaploid A. sativa L. Theor Appl Genet 123:1159–1171

    Article  CAS  PubMed  Google Scholar 

  • Ovesná J, Kučera L, Vaculová K, Milotová J, Snape J, Wenzl P, Huttner E, Kilian A, Martelli G, Milella L (2013) Analysis of the genetic structure of a barley collection using DNA Diversity Array Technology (DArT). Plant Mol Biol Rep 31:280–288

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quinn LD, Allen DJ, Stewart JR (2010) Invasiveness potential of Miscanthus sinensis: implications for bioenergy production in the United States. GCB Bioenergy 2:310–320

    Article  Google Scholar 

  • Raman H, Stodart B, Cavanagh C, Mackay M, Morell M, Milgate A, Martin P (2010) Molecular diversity and genetic structure of modern and traditional landrace cultivars of wheat (Triticum aestivum L.). Crop Pasture Sci 61:222–229

    Article  CAS  Google Scholar 

  • Rohlf F (1997) NTSYS-pc 2.1. Numerical taxonomy and multivariate analysis system Exeter Software. Exeter publishing Setauket, NY

    Google Scholar 

  • Sang T, Zhu W (2011) China’s bioenergy potential. GCB Bioenergy 3:79–90

    Article  Google Scholar 

  • Sharma M, Nagavardhini A, Thudi M, Ghosh R, Pande S, Varshney RK (2014) Development of DArT markers and assessment of diversity in Fusarium oxysporum f. sp. ciceris, wilt pathogen of chickpea (Cicer arietinum L.). BMC Genom 15:454

    Article  Google Scholar 

  • Simko I, Eujayl I, van Hintum TJ (2012) Empirical evaluation of DArT, SNP, and SSR marker-systems for genotyping, clustering, and assigning sugar beet hybrid varieties into populations. Plant Sci 184:54–62

    Article  CAS  PubMed  Google Scholar 

  • Von Mark VC, Kilian A, Dierig DA (2013) Development of DArT marker platforms and genetic diversity assessment of the US collection of the new oilseed crop Lesquerella and related species. PLoS One 8:e64062

    Article  Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xia L, Peng K, Yang S, Wenzl P, De Vicente MC, Fregene M, Kilian A (2005) DArT for high-throughput genotyping of cassava (Manihot esculenta) and its wild relatives. Theor Appl Genet 110:1092–1098

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Yu JY, You FM, Luo MC, Peng JH (2011) Transferability of microsatellite markers from Brachypodium distachyon to Miscanthus sinensis, a potential biomass crop. J Integr Plant Biol 53:232–245

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was mainly funded by Energene sp. z o.o., and partially supported by Peking University Shenzhen Graduate School start up grant 0068 to MD and a Key Project of Shenzhen Emerging Industries (No. JC201104210118A). MM holds executive position and has financial interest in Energene.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Mos.

Additional information

J. Tang and M. Daroch were contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Daroch, M., Kilian, A. et al. DArT-based characterisation of genetic diversity in a Miscanthus collection from Poland. Planta 242, 985–996 (2015). https://doi.org/10.1007/s00425-015-2335-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2335-z

Keywords

Navigation