Skip to main content

Advertisement

Log in

An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

In this study, we reported that a F-box protein, OsADF, as one of the direct targets of TDR , plays a critical role in rice tapetum cell development and pollen formation.

Abstract

The tapetum, the innermost sporophytic tissue of anther, plays an important supportive role in male reproduction in flowering plants. After meiosis, tapetal cells undergo programmed cell death (PCD) and provide nutrients for pollen development. Previously we showed that tapetum degeneration retardation (TDR), a basic helix-loop-helix transcription factor, can trigger tapetal PCD and control pollen wall development during anther development. However, the comprehensive regulatory network of TDR remains to be investigated. In this study, we cloned and characterized a panicle-specific expression F-box protein, anther development F-box (OsADF). By qRT-PCR and RNA in situ hybridization, we further confirmed that OsADF expressed specially in tapetal cells from stage 9 to stage 12 during anther development. In consistent with this specific expression pattern, the RNAi transgenic lines of OsADF exhibited abnormal tapetal degeneration and aborted microspores development, which eventually grew pollens with reduced fertility. Furthermore, we demonstrated that the TDR, a key regulator in controlling rice anther development, could regulate directly the expression of OsADF by binding to E-box motifs of its promoter. Therefore, this work highlighted the possible regulatory role of TDR, which regulates tapetal cell development and pollen formation via triggering the possible ADF-mediated proteolysis pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aya K, Ueguchi-Tanaka M, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M (2009) Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 21(5):1453–1472. doi:10.1105/tpc.108.062935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fu Z, Yu J, Cheng X, Zong X, Xu J, Chen M, Li Z, Zhang D, Liang W (2014) The rice basic helix-loop-helix transcription factor TDR INTERACTING PROTEIN2 is a central switch in early anther development. Plant Cell 26(4):1512–1524. doi:10.1105/tpc.114.123745

    Article  CAS  PubMed  Google Scholar 

  • Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant Cell 5(10):1217–1229. doi:10.1105/tpc.5.10.1217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haring M, Offermann S, Danker T, Horst I, Peterhansel C, Stam M (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3:11. doi:10.1186/1746-4811-3-11

    Article  PubMed Central  PubMed  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6(2):271–282

    Article  CAS  PubMed  Google Scholar 

  • Hong L, Tang D, Shen Y, Hu Q, Wang K, Li M, Lu T, Cheng Z (2012) MIL2 (MICROSPORELESS2) regulates early cell differentiation in the rice anther. New Phytol 196(2):402–413. doi:10.1111/j.1469-8137.2012.04270.x

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Cai Z, Xie W, Long T, Yu H, Zhang Q (2012) Rice functional genomics research: progress and implications for crop genetic improvement. Biotechnol Adv 30(5):1059–1070. doi:10.1016/j.biotechadv.2011.08.013

    Article  CAS  PubMed  Google Scholar 

  • Jung KH, Han MJ, Lee YS, Kim YW, Hwang I, Kim MJ, Kim YK, Nahm BH, An G (2005) Rice Undeveloped Tapetum1 is a major regulator of early tapetum development. Plant Cell 17(10):2705–2722. doi:10.1105/tpc.105.034090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kipreos ET, Pagano M (2000) The F-box protein family. Genome Biol 1 (5):REVIEWS3002. doi:10.1186/gb-2000-1-5-reviews3002

  • Kouchi H, Hata S (1993) Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol Gen Genet 238(1–2):106–119

    CAS  PubMed  Google Scholar 

  • Li YX (2010) Studies on selection verification and function of male sterile TDR down-regulated gene Os503 [Dissertation]. http://www.cnki.net/KCMS/detail/detail.aspx?

  • Li N, Zhang DS, Liu HS, Yin CS, Li XX, Liang WQ, Yuan Z, Xu B, Chu HW, Wang J, Wen TQ, Huang H, Luo D, Ma H, Zhang DB (2006) The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18(11):2999–3014. doi:10.1105/tpc.106.044107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, Zong J, Wilson ZA, Zhang D (2011) PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. Plant Physiol 156(2):615–630. doi:10.1104/pp.111.175760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma H (2005) Molecular genetic analyses of microsporogenesis and microgametogenesis in flowering plants. Annu Rev Plant Biol 56:393–434. doi:10.1146/annurev.arplant.55.031903.141717

    Article  CAS  PubMed  Google Scholar 

  • Mao J, Zhang YC, Sang Y, Li QH, Yang HQ (2005) From the Cover: a role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proc Natl Acad Sci USA 102(34):12270–12275. doi:10.1073/pnas.0501011102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCormick S (1993) Male gametophyte development. Plant Cell 5(10):1265–1275. doi:10.1105/tpc.5.10.1265

    Article  PubMed Central  PubMed  Google Scholar 

  • Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17(3):705–721. doi:10.1105/tpc.104.027920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niu N, Liang W, Yang X, Jin W, Wilson ZA, Hu J, Zhang D (2013) EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun 4:1445. doi:10.1038/ncomms2396

    Article  PubMed  Google Scholar 

  • Risseeuw EP, Daskalchuk TE, Banks TW, Liu E, Cotelesage J, Hellmann H, Estelle M, Somers DE, Crosby WL (2003) Protein interaction analysis of SCF ubiquitin E3 ligase subunits from Arabidopsis. Plant J 34(6):753–767

    Article  CAS  PubMed  Google Scholar 

  • Sanders PM, Lee PY, Biesgen C, Boone JD, Beals TP, Weiler EW, Goldberg RB (2000) The arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12(7):1041–1061

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scott R, Hodge R, Paul W (1991) The molecular biology of anther differentiation. Plant Sci 80:167–191

    Article  CAS  Google Scholar 

  • Wang H, Tang W, Zhu C, Perry SE (2002) A chromatin immunoprecipitation (ChIP) approach to isolate genes regulated by AGL15, a MADS domain protein that preferentially accumulates in embryos. Plant J 32(5):831–843

    Article  CAS  PubMed  Google Scholar 

  • Willemsen V, Wolkenfelt H, de Vrieze G, Weisbeek P, Scheres B (1998) The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo. Development 125(3):521–531

    CAS  PubMed  Google Scholar 

  • Wilson ZA, Morroll SM, Dawson J, Swarup R, Tighe PJ (2001) The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. Plant J 28(1):27–39

    Article  CAS  PubMed  Google Scholar 

  • Wu HM, Cheun AY (2000) Programmed cell death in plant reproduction. Plant Mol Biol 44(3):267–281

    Article  PubMed  Google Scholar 

  • Xu J, Yang C, Yuan Z, Zhang D, Gondwe MY, Ding Z, Liang W, Zhang D, Wilson ZA (2010) The ABORTED MICROSPORES regulatory network is required for postmeiotic male reproductive development in Arabidopsis thaliana. Plant Cell 22(1):91–107. doi:10.1105/tpc.109.071803

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang X, Wu D, Shi J, He Y, Pinot F, Grausem B, Yin C, Zhu L, Chen M, Luo Z, Liang W, Zhang D (2014) Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. J Integr Plant Biol. doi:10.1111/jipb.12212

    Google Scholar 

  • Yuan LP, Wu XJ, Liao FM, Ma GH, Xu QS (2003) Hybrid rice technology. China Agriculture Press

  • Zhang DB, Wilson ZA (2009) Stamen specification and anther development in rice. Chin Sci Bull 54:2342–2353

    Article  CAS  Google Scholar 

  • Zhang D, Yuan Z (2014) Molecular control of grass inflorescence development. Annu Rev Plant Biol 65:553–578. doi:10.1146/annurev-arplant-050213-040104

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus U, Ma H (2006) Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133(16):3085–3095. doi:10.1242/dev.02463

    Article  CAS  PubMed  Google Scholar 

  • Zhang DS, Liang WQ, Yuan Z, Li N, Shi J, Wang J, Liu YM, Yu WJ, Zhang DB (2008) Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Mol Plant 1(4):599–610. doi:10.1093/mp/ssn028

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Luo X, Zhu L (2011) Cytological analysis and genetic control of rice anther development. J Genet Genomics 38(9):379–390. doi:10.1016/j.jgg.2011.08.001

    Article  CAS  PubMed  Google Scholar 

  • Zhang DB, Yuan Z, An G, Dreni L, Hu JP, Kater MM (2013) Genetics and genomics of rice, plant genetics and genomics: crops and models. Panicle Dev 5:279–295

    Google Scholar 

  • Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, Conaway RC, Conaway JW, Harper JW, Pavletich NP (2002) Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416(6882):703–709. doi:10.1038/416703a

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Chen H, Li H, Gao JF, Jiang H, Wang C, Guan YF, Yang ZN (2008) Defective in Tapetal development and function 1 is essential for anther development and tapetal function for microspore maturation in Arabidopsis. Plant J 55(2):266–277. doi:10.1111/j.1365-313X.2008.03500.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Zong Jie for data analysis, Yi Wenwei for rice transformation, Luo Qingsong for field work. Prof. Zhang Dabing and Prof. Yuan Zheng from Shanghai Jiao Tong University is gratefully acknowledged for his valuable suggestions on the experimental design and manuscript. This study was supported by the National Natural Science Foundation of China (#31201184), Natural Science Foundation of Hunan Province, China (#14JJ2138), the National Key Programs for Transgenic Crops (#2011ZX08001-004) and the Program of Breeding and Application of hybrid Rice with Strong Heterosis (#2011AA10A101).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longping Yuan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Supplementary material 2 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Li, Y., Song, S. et al. An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development. Planta 241, 157–166 (2015). https://doi.org/10.1007/s00425-014-2160-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2160-9

Keywords

Navigation