Skip to main content
Log in

Copper homeostasis in grapevine: functional characterization of the Vitis vinifera copper transporter 1

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

The Vitis vinifera copper transporter 1 is capable of self-interaction and mediates intracellular copper transport.

Abstract

An understanding of copper homeostasis in grapevine (Vitis vinifera L.) is particularly relevant to viticulture in which copper-based fungicides are intensively used. In the present study, the Vitis vinifera copper transporter 1 (VvCTr1), belonging to the Ctr family of copper transporters, was cloned and functionally characterized. Amino acid sequence analysis showed that VvCTr1 monomers are small peptides composed of 148 amino acids with 3 transmembrane domains and several amino acid residues typical of Ctr transporters. Bimolecular fluorescence complementation (BiFC) demonstrated that Ctr monomers are self-interacting and subcellular localization studies revealed that VvCTr1 is mobilized via the trans-Golgi network, through the pre-vacuolar compartment and located to the vacuolar membrane. The heterologous expression of VvCTr1 in a yeast strain lacking all Ctr transporters fully rescued the phenotype, while a deficient complementation was observed in a strain lacking only plasma membrane-bound Ctrs. Given the common subcellular localization of VvCTr1 and AtCOPT5 and the highest amino acid sequence similarity in comparison to the remaining AtCOPT proteins, Arabidopsis copt5 plants were stably transformed with VvCTr1. The impairment in root growth observed in copt5 seedlings in copper-deficient conditions was fully rescued by VvCTr1, further supporting its involvement in intracellular copper transport. Expression studies in V. vinifera showed that VvCTr1 is mostly expressed in the root system, but transcripts were also present in leaves and stems. The functional characterization of VvCTr-mediated copper transport provides the first step towards understanding the physiological and molecular responses of grapevines to copper-based fungicides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACT1:

Actin 1

BCS:

Bathocuproine disulfonic acid

BiFC:

Bimolecular fluorescence complementation

CCH:

Copper chaperone

CFP:

Cyan fluorescent protein

CTAB:

Cetyltrimethylammonium bromide

Ctr/COPT:

Copper transporter

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GFP:

Green fluorescent protein

LB:

Luria–Bertani medium

pCOPT5 :

Promoter region of Arabidopsis COPT5

PIP:

Plasma membrane intrinsic protein

PVP:

Polyvinylpyrrolidone

RAN1:

Responsive to antagonist 1

RFP:

Red fluorescent protein

RRG:

Relative root growth

SC-URA:

Synthetic complete medium without uracil

SNARE:

Syntaxin family of soluble N-ethyl maleimide sensitive factor adaptor protein receptors

TMD:

Transmembrane domain

VvCTr:

Vitis vinifera copper transporter

YFP:

Yellow fluorescent protein

YPEG:

Yeast extract/peptone/ethanol/glycerol medium

References

  • Aller SG, Unger VM (2006) Projection structure of the human copper transporter CTR1 at 6-Å resolution reveals a compact trimer with a novel channel-like architecture. Proc Natl Acad Sci USA 103:3627–3632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aller SG, Eng ET, De Feo CJ, Unger VM (2004) Eukaryotic CTR copper uptake transporters require two faces of the third transmembrane domain for helix packing, oligomerization, and function. J Biol Chem 279:53435–53441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andrés-Colás N, Perea-García A, Puig S, Peñarrubia L (2010) Deregulated copper transport affects Arabidopsis development especially in the absence of environmental cycles. Plant Physiol 153:170–184

    Article  PubMed Central  PubMed  Google Scholar 

  • Boursiac Y, Chen S, Luu DT, Sorieul M, van den Dries N, Maurel C (2005) Early effects of salinity on water transport in Arabidopsis roots, molecular and cellular features of aquaporin expression. Plant Physiol 139:790–805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cohu CM, Pilon M (2010) Cell biology of copper. In: Hell R, Mendel RR (eds) Cell biology of metals and nutrients, plant cell monographs, vol 17. Springer, Berlin, pp 55–74

    Chapter  Google Scholar 

  • De Feo CJ, Aller SG, Siluvai GS, Blackburn NJ, Unger VM (2009) Three-dimensional structure of the human copper transporter hCTR1. Proc Natl Acad Sci USA 106:4237–4242

    Article  PubMed Central  PubMed  Google Scholar 

  • De Feo CJ, Mootien S, Unger VM (2010) Tryptophan scanning analysis of the membrane domain of CTR-copper transporters. J Membr Biol 234:113–123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deacon JW (2006) Principles and practice of controlling fungal growth. In: Deacon JW (ed) Fungal biology, 4th edn. Wiley, UK, pp 338–355

    Google Scholar 

  • Dučić T, Polle A (2005) Transport and detoxification of manganese and copper in plants. Braz J Plant Physiol 17:103–112

    Article  Google Scholar 

  • Eisses JF, Kaplan JH (2002) Molecular characterization of hCTR1, the human copper uptake protein. J Biol Chem 277:29162–29171

    Article  CAS  PubMed  Google Scholar 

  • Eisses JF, Kaplan JH (2005) The mechanism of copper uptake mediated by human CTR1, a mutational analysis. J Biol Chem 280:37159–37168

    Article  CAS  PubMed  Google Scholar 

  • Fleming CA, Trevors JT (1989) Copper toxicity and chemistry in the environment: a review. Water Air Soil Pollut 44:143–158

    Article  Google Scholar 

  • Fry SC, Miller JG, JoC Dumville (2002) A proposed role for copper ions in cell wall loosening. Plant Soil 247:57–67

    Article  CAS  Google Scholar 

  • García-Esparza MA, Capri E, Pirzadeh P, Trevisan M (2006) Copper content of grape and wine from Italian farms. Food Addit Contam 23:274–280

    Article  PubMed  Google Scholar 

  • Garcia-Molina A, Andrés-Colás N, Perea-García A, del Valle-Tascón S, Peñarrubia L, Puig S (2011) The intracellular Arabidopsis COPT5 transport protein is required for photosynthetic electron transport under severe copper deficiency. Plant J 65:848–860

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Molina A, Andrés-Colás N, Perea-García A, Neumann U, Dodani SC, Huijser P, Peñarrubia L, Puig S (2013) The Arabidopsis COPT6 transport protein functions in copper distribution under copper-deficient conditions. Plant Cell Physiol 54:1378–1390

    Article  CAS  PubMed  Google Scholar 

  • Gasic K, Korban SS (2006) Heavy metal stress. In: Madhava Rao KV, Raghavendra AS, Janardhan Reddy K (eds) Physiology and molecular biology of stress tolerance in plants. Springer, Netherlands, pp 219–254

  • Gehl C, Waadt R, Kudla J, Mendel RR, Hänsch R (2009) New gateway vectors for high throughput analyses of protein–protein interactions by bimolecular fluorescence complementation. Mol Plant 2:1051–1058

    Article  CAS  PubMed  Google Scholar 

  • Geldner N, Dénervaud-Tendon V, Hyman DL, Mayer U, Stierhof YD, Chory J (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J 59:169–178

    Article  CAS  PubMed  Google Scholar 

  • Himelblau E, Amasino RM (2000) Delivering copper within plant cells. Curr Opin Plant Biol 3:205–210

    Article  CAS  PubMed  Google Scholar 

  • Jung H, Gayomba SR, Rutzke MA, Craft E, Kochian LV, Vatamaniuk OK (2012) COPT6 is a plasma membrane transporter that functions in copper homeostasis in Arabidopsis and is a novel target of SQUAMOSA promoter-binding protein-like 7. J Biol Chem 287:33252–33267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kampfenkel K, Kushnir S, Babiychuk E, Inzé D, Van Montagu M (1995) Molecular characterization of a putative Arabidopsis thaliana copper transporter and its yeast homologue. J Biol Chem 270:28479–28486

    Article  CAS  PubMed  Google Scholar 

  • Karimi M, Inze D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  CAS  PubMed  Google Scholar 

  • Klaumann S, Nickolaus SD, Fürst SH, Starck S, Schneider S, Neuhaus HE, Trentmann O (2011) The tonoplast copper transporter COPT5 acts as an exporter and is required for interorgan allocation of copper in Arabidopsis thaliana. New Phytol 192:393–404

    Article  CAS  PubMed  Google Scholar 

  • Klomp AEM, Juijn JA, Van Der Gun LTM, Van Den Berg IET, Berger R, Klomp LWJ (2003) The N-terminus of the human copper transporter 1 (hCTR1) is localized extracellularly, and interacts with itself. Biochem J 370:881–889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mandal AK, Yang Y, Kertesz TM, Argüello JM (2004) Identification of the transmembrane metal binding site in Cu+-transporting PIB-type ATPases. J Biol Chem 279:54802–54807

    Article  CAS  PubMed  Google Scholar 

  • Martins V, Hanana M, Blumwald E, Gerós H (2012) Copper transport and compartmentation in grape cells. Plant Cell Physiol 53:1866–1880

    Article  CAS  PubMed  Google Scholar 

  • McCallan SEA (1948) The nature of the fungicidal action of copper and sulfur. Bot Rev 15:629–643

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nose Y, Rees EM, Thiele DJ (2006) Structure of the Ctr1 copper trans‘PORE’ter reveals novel architecture. Trends Biochem Sci 31:604–607

    Article  CAS  PubMed  Google Scholar 

  • Peña MMO, Koch KA, Thiele DJ (1998) Dynamic regulation of copper uptake and detoxification genes in Saccharomyces cerevisiae. Mol Cell Biol 18:2514–2523

    PubMed Central  PubMed  Google Scholar 

  • Peña MMO, Puig S, Thiele DJ (2000) Characterization of the Saccharomyces cerevisiae high affinity copper transporter Ctr3. J Biol Chem 275:33244–33251

    Article  PubMed  Google Scholar 

  • Peñarrubia L, Andrés-Colás N, Moreno J, Puig S (2010) Regulation of copper transport in Arabidopsis thaliana: a biochemical oscillator? J Biol Inorg Chem 15:29–36

    Article  PubMed  Google Scholar 

  • Perea-García A, Garcia-Molina A, Andrés-Colás N, Vera-Sirera F, Pérez-Amador MA, Puig S, Peñarrubia L (2013) Arabidopsis copper transport protein COPT2 participates in the cross talk between iron deficiency responses and low-phosphate signaling. Plant Physiol 162:180–194

    Article  PubMed Central  PubMed  Google Scholar 

  • Pilon M, Abdel-Ghany SE, Cohu CM (2006) Copper cofactor delivery in plant cells. Curr Opin Plant Biol 9:256–263

    Article  CAS  PubMed  Google Scholar 

  • Puig S, Thiele DJ (2002) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6:171–180

    Article  CAS  PubMed  Google Scholar 

  • Puig S, Andrés-Colás N, Garcia-Molina A, Peñarrubia L (2007) Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant, Cell Environ 30:271–290

    Article  CAS  Google Scholar 

  • Rees EM, Thiele DJ (2007) Identification of a vacuole-associated metalloreductase and its role in Ctr2-mediated intracellular copper mobilization. J Biol Chem 282:21629–21638

    Article  CAS  PubMed  Google Scholar 

  • Rees EM, Lee J, Thiele DJ (2004) Mobilization of intracellular copper stores by the Ctr2 vacuolar copper transporter. J Biol Chem 279:54221–54229

    Article  CAS  PubMed  Google Scholar 

  • Sancenón V, Puig S, Mira H, Thiele DJ, Peñarrubia L (2003) Identification of a copper transporter family in Arabidopsis thaliana. Plant Mol Biol 51:577–587

    Article  PubMed  Google Scholar 

  • Sancenón V, Puig S, Mateu-Andrés I, Dorcey E, Thiele DJ, Peñarrubia L (2004) The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J Biol Chem 279:15348–15355

    Article  PubMed  Google Scholar 

  • Sanderfoot AA, Kovaleva V, Bassham DC, Raikhel NV (2001) Interactions between syntaxins identify at least five SNARE complexes within the Golgi/prevacuolar system of the Arabidopsis cell. Mol Biol Cell 12:3733–3743

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sinani D, Adle DJ, Kim H, Lee J (2007) Distinct mechanisms for Ctr1-mediated copper and cisplatin transport. J Biol Chem 282:26775–26785

    Article  CAS  PubMed  Google Scholar 

  • Sparkes IA, Runions J, Kearns A, Hawes C (2006) Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc 1:2019–2025

    Article  CAS  PubMed  Google Scholar 

  • Van Mullem V, Wery M, De Bolle X, Vandenhaute J (2003) Construction of a set of Saccharomyces cerevisiae vectors designed for recombinational cloning. Yeast 20:739–746

    Article  PubMed  Google Scholar 

  • Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36:409–430

    Article  CAS  Google Scholar 

  • Yuan M, Li X, Xiao J, Wang S (2011) Molecular and functional analyses of COPT/Ctr-type copper transporter-like gene family in rice. BMC Plant Biol 11:69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou B, Gitschier J (1997) hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci USA 94:7481–7486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou H, Thiele DJ (2001) Identification of a novel high affinity copper transport complex in the fission yeast Schizosaccharomyces pombe. J Biol Chem 276:20529–20535

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Lola Peñarrubia and Antoni Garcia i Molina for providing the Arabidopsis copt5 line used in this study. We are grateful to Dennis J. Thiele for providing the ctr1Δctr3Δctr2Δ and the ctr1Δctr3Δ knock out yeast strains. We thank Niko Geldner for providing the wave line constructs used in this study. We are grateful to Hiromi Tajima for providing the Remorin constructs. This work was supported by European Union Funds (FEDER/COMPETE-Operational Competitiveness Program) - Portuguese Foundation for Science and Technology [FCOMP-01-0124-FEDER-022692, FCOMP-01-0124-FEDER-008760 (Ref. FCT PTDC/AGR-ALI/100636/2008), FCT/5955/27/5/2013/S—scientific cooperation Portugal-Tunisia, PhD grant no. SFRH/BD/64587/2009 to V.M.]; by the networking activities within the European project INNOVINE [ref. 311775]; by the European COST Action [FA1106 “QualityFruit”] and by the Will W. Lester Endowment University of California.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernâni Gerós.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 151 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, V., Bassil, E., Hanana, M. et al. Copper homeostasis in grapevine: functional characterization of the Vitis vinifera copper transporter 1. Planta 240, 91–101 (2014). https://doi.org/10.1007/s00425-014-2067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-014-2067-5

Keywords

Navigation