Skip to main content
Log in

O-methyltransferase(s)-suppressed plants produce lower amounts of phenolic vir inducers and are less susceptible to Agrobacterium tumefaciens infection

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The first step of Agrobacterium tumefaciens/plant interaction corresponds to the activation of a transduction pathway of the bacterium by plant exudate. Phenolic compounds rapidly secreted by wounded plant cells induce the expression of bacterial virulence (vir) genes; however, little is known about their biosynthesis in plant. Here we show that inoculation of an Agrobacterium tumefaciens virulent strain on orthodiphenol-O-methyltransferases-suppressed tobacco plants leads to significantly smaller tumors compared to control plants. These transgenic plants are inhibited for caffeic acid O-methyltransferase class I or II (OMT; EC 2.1.1.6) and/or caffeoyl-coenzyme A O-methyltransferase (CCoAOMT; EC 2.1.1.104) that are involved in monolignol biosynthesis. The significant decrease of tumor size could be suppressed by the pre-activation of bacterial virulence, before inoculation, using acetosyringone a known vir inducer. Total soluble phenolic amounts and cell wall composition analyzed by FT-IR analysis did not show significant differences between transgenic and control plants. The potential of phenolic extracts from control and OMT-suppressed plants to induce virulence was evaluated using an Agrobacterium tumefaciens reporter strain carrying a vir::LacZ gene fusion plasmid. Lower vir-inducing activities were recorded for plants that show inhibition to caffeic acid O-methyltransferase activity. HPLC analysis confirmed that the levels of several phenolic compounds were differently affected by wounding and/or by bacterial inoculation. Statistical correlations were established between tumor sizes, vir-inducing activities, O-methyltransferases proteins accumulations and the levels of various soluble phenolic compounds such as acetosyringone. These results demonstrate the role of the O-methyltransferases of the phenylpropanoid pathway in the early production of soluble Agrobacterium tumefaciens vir inducers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

CCoAOMT:

Caffeoyl-coenzyme A O-methyltransferase

COMTI:

Caffeic acid O-methyltransferase of class I

COMTII:

Caffeic acid O-methyltransferase of class II

FT-IR:

Fourier transformed-infrared

HPLC:

High-performance liquid chromatography

OMT:

Orthodiphenol-O-methyltransferases

Vir :

Virulence

References

  • Anand A, Vaghchhipawala Z, Ryu C-M, Kang L, Wang K, del-Pozo O, Martin GB, Mysore KS (2007) Identification and characterization of plant genes involved in Agrobacterium-mediated plant transformation by virus-induced gene silencing. Mol Plant Microbe Interact 20:41–52

    Article  PubMed  CAS  Google Scholar 

  • Atanassova R, Favet N, Martz F, Chabbert B, Tollier MT, Monties B, Fritig B, Legrand M (1995) Altered lignin composition in transgenic tobacco expressing O-methyltransferase sequences in sense and antisense orientation. Plant J 8:465–477

    Article  CAS  Google Scholar 

  • Baker CJ, Mock NM, Whitaker BD, Roberts DP, Rice CP, Deahl KL, Aver’yanov AA (2005) Involvement of acetosyringone in plant-pathogen recognition. Biochem Biophys Res Com 328:130–136

    Article  PubMed  CAS  Google Scholar 

  • Berthelot K, Buret D, Guérin B, Delay D, Negrel J, Delmotte FM (1998) Vir-gene-inducing activities of hydroxycinnamic acid amides in Agrobacterium tumefaciens. Phytochemistry 49:1537–1548

    Article  PubMed  CAS  Google Scholar 

  • Causevic A, Delaunay A, Ounnar S, Righezza M, Delmotte FM, Brignolas F, Hagège D, Maury S (2005) DNA methylating and demethylating treatments modify phenotype and cell wall differentiation state in sugarbeet cell lines. Plant Physiol Biochem 43:681–691

    Article  PubMed  CAS  Google Scholar 

  • Chabannes M, Barakate A, Lapierre C, Marita JM, Ralph J, Pean M, Danoun S, Halpin C, Grima-Pettenati J, Boudet AM (2001) Strong alteration in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl coA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants. Plant J 28:257–270

    Article  PubMed  CAS  Google Scholar 

  • Chevrot R, Rosen R, Haudecoeur E, Cirou A, Shelp BJ, Ron E, Faure D (2006) GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 103:7460–7464

    Article  PubMed  CAS  Google Scholar 

  • Dafny-Yelin M, Levy A, Tzfira T (2008) The ongoing saga of Agrobacterium–host interactions. Trends Plant Sci 13:102–105

    Article  PubMed  CAS  Google Scholar 

  • De Ascensao AR, Dubery IA (2003) Soluble and wall-bound phenolics and phenolic polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f.sp. cubense. Phytochemistry 63:679–686

    Article  PubMed  CAS  Google Scholar 

  • Ditt RF, Kerr KF, de Figueiredo P, Delrow J, Comai L, Nester EW (2006) The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. Mol Plant Microbe Interact 19:665–681

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS, Wang L (2002) The phenylpropanoid pathway and plant defense-a genomics perspective. Mol Plant Pathol 3:371–390

    Article  PubMed  CAS  Google Scholar 

  • Do C-T, Pollet B, Thévenin J, Sibout R, Denoue D, Barrière Y, Lapierre C, Jouanin L (2007) Both caffeoyl coenzyme A 3-O-methyltransferase 1 and caffeic acid 3-O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta 226:1117–1129

    Article  PubMed  CAS  Google Scholar 

  • Doorsselaere JV, Baucher M, Chognot E, Chabbert B, Tollier M-T, Petit-Conil M, Leplé J-C, Pilate G, Cornu D, Monties B, Van Montagu M, Inzé D, Boerjan W, Jouanin L (1995) A novel lignin in poplar trees with a reduced caffeic acid/5-hydroxyferulic acid O-methyltransferase activity. Plant J 8:855–864

    Google Scholar 

  • Ferrer J-L, Austin MB, Stewart CJ, Noel JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB (2006) Agrobacterium virulence gene induction. Methods Mol Biol 343:77–84

    PubMed  CAS  Google Scholar 

  • Hano C, Addi M, Bensaddek L, Crônier D, Baltora-Rosset S, Doussot J, Maury S, Mesnard F, Chabbert B, Hawkins S, Lainé E, Lamblin F (2006) Differential accumulation of monolignol-derived compounds in elicited flax (Linum usitatissimum) cell suspension cultures. Planta 223:975–989

    Article  PubMed  CAS  Google Scholar 

  • Hawkins S, Boudet AM (2003) Defense lignin and hydroxycinnamyl alcohol dehydrogenase activities in wounded Eucalyptus gunnii hook. Forest Pathol 33:91–104

    Article  Google Scholar 

  • Hoffmann L, Maury S, Bergdoll M, Thion L, Erard M, Legrand M (2001) Identification of the enzymatic active site of tobacco caffeoyl-coenzyme A O-methyltransferase by site-directed mutagenesis. J Biol Chem 276:36831–36838

    Article  PubMed  CAS  Google Scholar 

  • Hua SS (2001) Inhibitory effect of acetosyringone on two aflatoxin biosynthetic genes. Lett Appl Microbiol 32:278

    Article  PubMed  CAS  Google Scholar 

  • Hua SS, Grosjean OK, Baker JL (1999) Inhibition of aflatoxin biosynthesis by phenolic compounds. Lett Appl Microbiol 29:289

    Google Scholar 

  • Iiyama K, Lam TB-T, Stone BA (1994) Covalent cross-links in the cell wall. Plant Physiol 104:315–320

    PubMed  CAS  Google Scholar 

  • Jaeck E, Dumas B, Geoffroy P, Favet N, Inze D, Van Montagu M, Fritig B, Legrand M (1992) Regulation of enzymes involved in lignin biosynthesis: induction of O-methyltransferase mRNAs during the hypersensitive reaction of tobacco to tobacco mosaic virus. Mol Plant Microbe Interact 5:294–300

    PubMed  CAS  Google Scholar 

  • Klinke HB, Ahring BK, Schmidt AS, Thomsen AB (2002) Characterization of degradation products from alkaline wet oxidation of wheat straw. Bioresour Technol 82:15–26

    Article  PubMed  CAS  Google Scholar 

  • Lee Y-W, Jin S, Sims W-S, Nester EW (1995) Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens. Proc Natl Acad Sci USA 92:12245–12249

    Article  PubMed  CAS  Google Scholar 

  • Lynn DG, Chen RH, Manning KS, Wood HN (1987) The structural characterization of endogenous factor from Vinca rosea crow, gall tumors that promote cell division of tobacco cells. Proc Natl Acad Sci USA 84:615–619

    Article  PubMed  CAS  Google Scholar 

  • Martz F (1997) Modification de l’activité O-méthyltransférase dans des tabacs transgéniques: conséquences sur la lignine et la résistance au Virus de la Mosaïque du Tabac. PhD Thesis, Université Louis Pasteur, Strasbourg, France

  • Martz F, Maury S, Pinçon G, Legrand M (1998) cDNA cloning, substrate specificity and expression study of tobacco caffeoyl-CoA 3-O-methyltransferase, a lignin biosynthetic enzyme. Plant Mol Biol 36:427–437

    Article  PubMed  CAS  Google Scholar 

  • Maury S (2000) Etude des O-méthyltransférases de la voie des phénylpropanoïdes chez le tabac et modulation de leur expression dans des tabacs transgéniques: conséquences sur la biosynthèse de la lignine et d’autres composés phénoliques et sur la résistance aux agents pathogènes. PhD Thesis, Université Louis Pasteur, Strasbourg, France

  • Maury S, Geoffroy P, Legrand M (1999) Tobacco O-methyltransferases involved in phenylpropanoid metabolism: the different CCoAOMT and COMT classes have distinct substrate specificities and expression patterns. Plant Physiol 121:215–224

    Article  PubMed  CAS  Google Scholar 

  • McCullen CA, Binns AN (2006) Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 22:101–127

    Article  PubMed  CAS  Google Scholar 

  • Melchers LS, Regenburg-Tuïnk AJG, Schilperoort RA, Hooykaas PJ (1989) Specificity of signal molecules in the activation of Agrobacterium virulence gene expression. Mol Microbiol 3:969–977

    Article  PubMed  CAS  Google Scholar 

  • Messens E, Dekeyser R, Stachel SE (1990) A nontransformable Triticum monococcum monocotyledonous culture produces the potent Agrobacterium vir-inducing compound ethyl ferulate. Proc Natl Acad Sci USA 87:4368–4372

    Article  PubMed  CAS  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–389

    Article  CAS  Google Scholar 

  • Orr JD, Lynn DG (1992) Biosynthesis of dehydrodiconiferyl alcohol glucosides: implications for the control of tobacco cell growth. Plant Physiol 98:343–352

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini LOG, Geoffroy P, Fritig B, Legrand M (1993) Molecular cloning and expression of a new class of ortho-diphenol-O-methyltransferases induced in tobacco leaves by infection or elicitor treatment. Plant Physiol 103:509–517

    Article  PubMed  CAS  Google Scholar 

  • Pinçon G, Maury S, Hoffmann L, Geoffroy P, Lapierre C, Pollet B, Legrand M (2001a) Repression of O-methyltransferase genes in transgenic tobacco affects lignin synthesis and plant growth. Phytochemistry 57:1167–1176

    Article  PubMed  Google Scholar 

  • Pinçon G, Chabannes M, Lapierre C, Pollet B, Ruel K, Joseleau J-P, Boudet AM, Legrand M (2001b) Simultaneous down-regulation of caffeic/5-hydroxyferulic acid-O-methyltransferase I and cinnamoyl-coenzyme A reductase in the progeny from a cross between tobacco lines homozygous for each transgene consequences for plant development and lignin synthesis. Plant Physiol 2001:145–155

    Article  Google Scholar 

  • Shimoda N, Toyoda-Yamamoto A, Nugamine J, Usami S, Katayama M, Shakagami Y, Machida Y (1990) Control of expression of Agrobacterium vir genes by synergistic actions of phenolic signal molecules and monosaccharides. Proc Natl Acad Sci USA 87:6684–6688

    Article  PubMed  CAS  Google Scholar 

  • Stachel SE, Messens E, Van Montagu M, Zambryski P (1985a) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629

    Article  Google Scholar 

  • Stachel SE, Gynheung A, Flores C, Nester EW (1985b) A Tn3 lacZ transposon for the random generation of β-galactosidase gene fusion; application to the analysis of gene expression in Agrobacterium. EMBO J 4:891–898

    PubMed  CAS  Google Scholar 

  • Tamagnone L, Merida A, Stacey N, Plaskitt K, Parr A, Chang C-F, Lynn D, Dow JM, Roberts K, Martin C (1998) Inhibition of phenolic acid metabolism results in precocious cell death and altered cell morphology in leaves of transgenic tobacco plants. Plant Cell 10:1801–1816

    Article  PubMed  CAS  Google Scholar 

  • Teutonico RA, Dudley MW, Orr JD, Lynn DG, Binns AN (1991) Activity and accumulation of cell division-promoting phenolics in tobacco tissue cultures. Plant Physiol 97:288–297

    Article  PubMed  CAS  Google Scholar 

  • Toquin V, Grausem B, Geoffroy P, Legrand M (2003) Structure of the tobacco caffeic acid O-methyltransferase (COMT) II gene: identification of promoter sequences involved in gene inductibility by various stimuli. Plant Mol Biol 52:495–509

    Article  PubMed  CAS  Google Scholar 

  • Vance CP, Kirk TK, Sherwood RT (1980) Lignification as a mechanism of disease resistance. Annu Rev Phytopathol 18:259–288

    Article  CAS  Google Scholar 

  • Veena HJ, Doerge RW, Gelvin SB (2003) Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defence gene expression. Plant J 35:219–236

    Article  PubMed  CAS  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003a) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  PubMed  CAS  Google Scholar 

  • Walker TS, Bais HP, Halligan KM, Stermitz FR, Vivanco JM (2003b) Metabolic profiling of root exudates of Arabidopsis thaliana. J Agric Food Chem 51:2548–2554

    Article  PubMed  CAS  Google Scholar 

  • Yuan Z-C, Edlind MP, Liu P, Saenkham P, Banta LM, Wise AA, Ronzone E, Binns AN, Kerr K, Nester EW (2007) The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium. Proc Natl Acad Sci USA 104:11790–11795

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Boone L, Kocz R, Zhang C, Binns AN, Lynn DG (2000) At the maize/Agrobacterium interface: natural factors limiting host transformation. Chem Biol 7:611–621

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Morrison WH, Negrel J, Ye ZH (1998) Dual methylation pathway in lignin biosynthesis. Plant Cell 10:2033–2046

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Oger PM, Schrammeijer B, Hooykaas PJJ, Farrand SK, Winans SC (2000) The bases of crown gall tumorigenesis. J Bacteriol 182:3885–3895

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Professor F. Delmotte from LBLGC University of Orléans and Léon Otten from IBMP du CNRS of Strasbourg for providing Agrobacterium tumefaciens strains. We acknowledge Dr G. Pinçon, Dr F. Martz, Dr V. Toquin and Professor R. Atanassova for their previous works on OMT plants. We thank Professor E. Lainé and Professor Franck Brignolas from LBLGC for helpful discussions. We are grateful to A. Guichard for taking good care of tobacco plants and to Gilles Moreau France for technical assistance. This work was supported by the Ministère de l’Education Nationale, de l’Enseignement Supérieur et de la Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Maury.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2010_1230_MOESM1_ESM.pdf

FT-IR analysis of cell wall composition in transgenic stems after wounding or agroinfection. Average spectra were obtained from the cell wall analysis of eight replicates. C, control plants transformed with empty plasmid; COMTI, transgenic tobaccos suppressed for COMTI; COMTII, transgenic tobaccos suppressed for COMTII; CCoAOMT, transgenic tobaccos suppressed for CCoAOMT; dAS, transgenic tobaccos suppressed for COMTI and CCoAOMT. Unwounded (a), wounded and mock inoculated (b) or wounded and Agrobacterium tumefaciens infected transgenic plants (c) (Supplementary material 1 (PDF 74 kb)

425_2010_1230_MOESM2_ESM.pdf

Total soluble phenolic contents of transgenic stems after wounding or agroinfection. Total soluble phenolic compounds were extracted and quantified using Folin-Ciocalteu’s reagent. Extracts were prepared from 6-hours post-treatment tobacco stems of unwounded (white bars), wounded and mock inoculated (grey bars) or wounded and inoculated with a saturated culture of Agrobacterium tumefaciens (black bars) transgenic plants: C, control plants transformed with an empty plasmid; COMTI, transgenic tobaccos suppressed for COMTI; COMTII, transgenic tobaccos suppressed for COMTII; CCoAOMT, transgenic tobacco suppressed for CCoAOMT; dAS, transgenic tobacco suppressed for COMTI and CCoAOMT. Mean values ± SE (n=4) are shown. Two independent experiments were performed. In order to evaluate genotypic and treatment effects, two-way ANOVA analysis was performed: for each graph, g indicates the genotype effect, t the treatment effect and gxt the genotype by treatment interaction. Significant effects are indicated at * P ≤ 0.05 or ** P ≤ 0.01 (Supplementary material 2 (PDF 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maury, S., Delaunay, A., Mesnard, F. et al. O-methyltransferase(s)-suppressed plants produce lower amounts of phenolic vir inducers and are less susceptible to Agrobacterium tumefaciens infection. Planta 232, 975–986 (2010). https://doi.org/10.1007/s00425-010-1230-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1230-x

Keywords

Navigation