Skip to main content
Log in

A correlation between host-mediated expression of parasite genes as tandem inverted repeats and abrogation of development of female Heterodera glycines cyst formation during infection of Glycine max

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Host-mediated (hm) expression of parasite genes as tandem inverted repeats was investigated as a means to abrogate the formation of mature Heterodera glycines (soybean cyst nematode) female cysts during its infection of Glycine max (soybean). A Gateway®-compatible hm plant transformation system was developed specifically for these experiments in G. max. Three steps then were taken to identify H. glycines candidate genes. First, a pool of 150 highly conserved H. glycines homologs of genes having lethal mutant phenotypes or phenocopies from the free living nematode Caenorhabditis elegans were identified. Second, annotation of those 150 genes on the Affymetrix® soybean GeneChip® allowed for the identification of a subset of 131 genes whose expression could be monitored during the parasitic phase of the H. glycines life cycle. Third, a microarray analyses identified a core set of 32 genes with induced expression (>2.0-fold, log base 2) during the parasitic stages of infection. H. glycines homologs of small ribosomal protein 3a and 4 (Hg-rps-3a [accession number CB379877] and Hg-rps-4 [accession number CB278739]), synaptobrevin (Hg-snb-1 [accession number BF014436]) and a spliceosomal SR protein (Hg-spk-1 [accession number BI451523.1]) were tested for functionality in hm expression studies. Effects on H. glycines development were observed 8 days after infection. Experiments demonstrated that 81–93% fewer females developed on transgenic roots containing the genes engineered as tandem inverted repeats. The effect resembles RNA interference. The methodology has been used here as an alternative approach to engineer resistance to H. glycines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

eGFP:

Enhanced green fluorescent protein

RNAi:

RNA interference

References

  • Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EG, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC, Caillaud MC, Coutinho PM, Dasilva C, De Luca F, Deau F, Esquibet M, Flutre T, Goldstone JV, Hamamouch N, Hewezi T, Jaillon O, Jubin C, Leonetti P, Magliano M, Maier TR, Markov GV, McVeigh P, Pesole G, Poulain J, Robinson-Rechavi M, Sallet E, Ségurens B, Steinbach D, Tytgat T, Ugarte E, van Ghelder C, Veronico P, Baum TJ, Blaxter M, Bleve-Zacheo T, Davis EL, Ewbank JJ, Favery B, Grenier E, Henrissat B, Jones JT, Laudet V, Maule AG, Quesneville H, Rosso MN, Schiex T, Smant G, Weissenbach J, Wincker P (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26:909–915

    Article  PubMed  CAS  Google Scholar 

  • Alkharouf N, Matthews BF (2004) SGMD: the soybean genomics and microarray database. Nucleic Acids Res 32:D398–D400

    Article  PubMed  CAS  Google Scholar 

  • Alkharouf NW, Klink VP, Chouikha IB, Beard HS, MacDonald MH, Meyer S, Knap HT, Khan R, Matthews BF (2006) Timecourse microarray analyses reveals global changes in gene expression of susceptible Glycine max (soybean) roots during infection by Heterodera glycines (soybean cyst nematode). Planta 224:838–852

    Article  PubMed  CAS  Google Scholar 

  • Alkharouf N, Klink VP, Matthews BF (2007) Identification of Heterodera glycines (soybean cyst nematode [SCN]) DNA sequences with high similarity to those of Caenorhabditis elegans having lethal mutant or RNAi phenotypes. Exp Parasitol 115:247–258

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Bakhetia M, Urwin PE, Atkinson HJ (2007) QPCR analysis and RNAi define pharyngeal gland cell-expressed genes of Heterodera glycines required for initial interactions with the host. Mol Plant Microbe Interact 20:306–312

    Article  PubMed  CAS  Google Scholar 

  • Bakhetia M, Urwin PE, Atkinson HJ (2008) Characterisation by RNAi of pioneer genes expressed in the dorsal pharyngeal gland cell of Heterodera glycines and the effects of combinatorial RNAi. Int J Parasitol (in press)

  • Bernard P, Couturier M (1991) The 41 carboxy-terminal residues of the Mini-F plasmid ccdA protein are sufficient to antagonize the killer activity of the CcdB protein. Mol Gen Genet 226:297–304

    Article  PubMed  CAS  Google Scholar 

  • Bertioli DJ, Smoker M, Burrows PR (1999) Nematode-responsive activity of the cauliflower mosaic virus 35S promoter and its subdomains. Mol Plant Microbe Interact 12:189–196

    Article  CAS  Google Scholar 

  • Bhattacharyya S, Dey N, Maiti IB (2002) Analysis of cis-sequence of subgenomic transcript promoter from the Figwort mosaic virus and comparison of promoter activity with the cauliflower mosaic virus promoters in monocot and dicot cells. Virus Res 90:47–62

    Article  PubMed  Google Scholar 

  • Byrd DW Jr, Kirkpatrick T, Barker KR (1983) An improved technique for clearing and staining plant tissue for detection of nematodes. J Nematol 15:142–143

    Google Scholar 

  • Collier R, Fuchs B, Walter N, Kevin Lutke W, Taylor CG (2005) Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J 43:449–457

    Article  PubMed  CAS  Google Scholar 

  • Corish P, Tyler-Smith C (1999) Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng 12:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • de Ruijter NCA, Verhees J, van Leeuwen W, van der Krol AR (2003) Evaluation and comparison of the GUS, LUC and GFP reporter system for gene expression studies in plants. Plant Biol 5:103–115

    Article  Google Scholar 

  • Elmayan T, Tepfer M (1995) Evaluation in tobacco of the organ specificity and strength of the rolD promoter, domain A of the 35S promoter and the 35S2 promoter. Transgenic Res 4:388–396

    Article  PubMed  CAS  Google Scholar 

  • Endo BY (1964) Penetration and development of Heterodera glycines in soybean roots and related and related anatomical changes. Phytopathology 54:79–88

    Google Scholar 

  • Endo BY (1965) Histological responses of resistant and susceptible soybean varieties, and backcross progeny to entry development of Heterodera glycines. Phytopathology 55:375–381

    CAS  Google Scholar 

  • Endo BY (1971) Synthesis of nucleic acids at infection sites of soybean roots parasitized by Heterodera glycines. Phytopathology 61:395–399

    CAS  Google Scholar 

  • Endo BY (1991) Ultrastructure of initial responses of resistant and susceptible soybean roots to infection by Heterodera glycines. Rev Nematol 14:73–94

    Google Scholar 

  • Endo BY, Veech JA (1970) Morphology and histochemistry of soybean roots infected with Heterodera glycines. Phytopathology 60:1493–1498

    CAS  Google Scholar 

  • Escobar MA, Civerolo EL, Summerfelt KR, Dandekar AM (2001) RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc Natl Acad Sci USA 98:13437–13442

    Article  PubMed  CAS  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenohrabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Gipson I, Kim KS, Riggs RD (1971) An ultrastructural study of syncytium development in soybean roots infected with Heterodera glycines. Phytopathology 61:347–353

    Article  Google Scholar 

  • Golden AM, Epps JM, Riggs RD, Duclos LA, Fox JA, Bernard RL (1970) Terminology and identity of infraspecific forms of the soybean cyst nematode (Heterodera glycines). Plant Dis Rep 54:544–546

    Google Scholar 

  • Haas JH, Moore LW, Ream W, Manulis S (1995) Universal PCR primers for detection of phytopathogenic Agrobacterium strains. Appl Environ Microbiol 61:2879–2884

    PubMed  CAS  Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94:2122–2127

    Article  PubMed  CAS  Google Scholar 

  • Helliwell C, Waterhouse P (2003) Constructs and methods for high-throughput gene silencing in plants. Methods 30:289–295

    Article  PubMed  CAS  Google Scholar 

  • Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Springer PS, Kaloshian I (2003) Expression of the Arabidopsis MCM gene PROLIFERA during root-knot and cyst nematode infection. Phytopathology 93:35–41

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Allen R, Davis EL, Baum TJ, Hussey RS (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci USA 103:14302–14306

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jenkins WR, Taylor DP (1967) Plant nematology. Reinhold, New York

    Google Scholar 

  • Jones MGK, Dropkin VH (1975) Scanning electron microscopy of syncytial transfer cells induced in roots by cyst-nematode. Physiol Plant Pathol 7:259–263

    Article  Google Scholar 

  • Jones MGK, Northcote DH (1972) Nematode-induced syncytium—a multinucleate transfer cell. J Cell Sci 10:789–809

    PubMed  CAS  Google Scholar 

  • Jung C, Wyss U (1999) New approaches to control plant parasitic nematodes. Appl Microbiol Biotechnol 51:439–446

    Article  CAS  Google Scholar 

  • Kim YH, Riggs RD, Kim KS (1987) Structural changes associated with resistance of soybean to Heterodera glycines. J Nematol 19:177–187

    PubMed  CAS  Google Scholar 

  • Klink VP, Wolniak SM (2000) The efficacy of RNAi in the study of the plant cytoskeleton. J Plant Growth Regul 19:371–384

    PubMed  CAS  Google Scholar 

  • Klink VP, Wolniak SM (2001) Centrin is necessary for the formation of the motile apparatus in spermatids of Marsilea. Mol Biol Cell 12:761–776

    PubMed  CAS  Google Scholar 

  • Klink VP, Overall CC, Alkharouf N, MacDonald MH, Matthews BF (2007a) A comparative microarray analysis of an incompatible and compatible disease response by soybean (Glycine max) to soybean cyst nematode (Heterodera glycines) infection. Planta 226:1423–1447

    Article  PubMed  CAS  Google Scholar 

  • Klink VP, Overall CC, Alkharouf N, MacDonald M, Matthews BF (2007b) Laser capture microdissection (LCM) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean (Glycine max) roots infected by the soybean cyst nematode (Heterodera glycines). Planta 226:1389–1409

    Article  PubMed  CAS  Google Scholar 

  • Klink VP, Martins VE, Alkharouf NW, Overall CC, MacDonald MH, Matthews BF (2007c) A decline in transcript abundance for Heterodera glycines homologs of Caenorhabditis elegans uncoordinated genes accompanies its sedentary parasitic phase. BMC Dev Biol 7:35

    Article  PubMed  CAS  Google Scholar 

  • Klink VP, Overall CC, Matthews BF (2007d) Developing a systems biology approach to study disease progression caused by Heterodera glycines in Glycine max. Gene Regul Syst Biol 2:17–33

    Google Scholar 

  • Klink VP, MacDonald MH, Martins VE, Park S-C, Kim K-H, Baek S-H, Matthews BF (2008) MiniMax, a new diminutive Glycine max variety, with a rapid life cycle, embryogenic potential and transformation capabilities. Plant Cell Tissue Organ Cult 92:183–195

    Article  CAS  Google Scholar 

  • Kovaleva ES, Subbotin SA, Masler EP, Chitwood DJ (2005) Molecular characterization of the actin gene from cyst nematodes in comparison with those from other nematodes. Comp Parasitol 2005(72):39–49

    Article  Google Scholar 

  • Matthews B, MacDonald MH, Thai VK, Tucker ML (2003) Molecular characterization of arginine kinase in the soybean cyst nematode (Heterodera glycines). J Nematol 35:252–258

    PubMed  CAS  Google Scholar 

  • Matthews BF, Pilitt K, Klink VP (2004) Molecular characterization of a soybean cyst nematode (Heterodera glycines) homolog of unc-87. J Nematol 36:457–465

    PubMed  CAS  Google Scholar 

  • McLean MD, Hoover GJ, Bancroft B, Makhmoudova A, Clark SM, Welacky T, Simmonds DH, Shelp BJ (2007) Identification of the full length Hs1pro−1 coding sequence and preliminary evaluation of soybean cyst nematode resistance in soybean transformed with Hs1pro−1 cDNA. Can J Bot 85:437–441

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  PubMed  CAS  Google Scholar 

  • Niblack TL, Arelli PR, Noel GR, Opperman CH, Orf JH, Schmitt DP, Shannon JG, Tylka GL (2002) A revised classification scheme for genetically diverse populations of Heterodera glycines. J Nematol 34:279–288

    PubMed  CAS  Google Scholar 

  • Riggs RD, Schmitt DP (1991) Optimization of the Heterodera glycines race test procedure. J Nematol 23:149–154

    PubMed  CAS  Google Scholar 

  • Riggs RD, Kim KS, Gipson I (1973) Ultrastructural changes in Peking soybeans infected with Heterodera glycines. Phytopathology 63:76–84

    Google Scholar 

  • Salmon MA, Van Melderen L, Bernard P, Couturier M (1994) The antidote and autoregulatory functions of the F plasmid ccdA protein: a genetic and biochemical survey. Mol Gen Genet 244:530–538

    Article  PubMed  CAS  Google Scholar 

  • Sardanelli S, Kenworthy WJ (1997) Soil moisture control and direct seeding for bioassay of Heterodera glycines on soybean. J Nematol (Suppl) 29:625–634

    CAS  Google Scholar 

  • Sindhu AS, Maier TR, Mitchum MG, Hussey RS, Davis EL, Baum TJ (2009) Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success. J Exp Bot 60(1):315–324

    Article  PubMed  CAS  Google Scholar 

  • Steeves RM, Todd TC, Essig JS, Trick HN (2006) Transgenic soybeans expressing siRNAs specific to a major sperm protein gene suppress Heterodera glycines reproduction. Funct Plant Biol 33:991–999

    Article  CAS  Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37:959–967

    Article  PubMed  CAS  Google Scholar 

  • The Gene Ontology Consortium (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32:D258–D261

    Article  CAS  Google Scholar 

  • Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395:854

    Article  PubMed  CAS  Google Scholar 

  • Urwin PE, Lilley CJ, Atkinson HJ (2002) Ingestion of double-stranded RNA by preparasitic juvenile cyst nematodes leads to RNA interference. Mol Plant Microbe Interact 15:747–752

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Ahn JH, Blázquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrándiz C, Kardailsky I, Malancharuvil EJ, Neff MM, Nguyen JT, Sato S, Wang ZY, Xia Y, Dixon RA, Harrison MJ, Lamb CJ, Yanofsky MF, Chory J (2000) Activation tagging in Arabidopsis. Plant Physiol 122:1003–1013

    Article  PubMed  CAS  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang MB, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    Article  PubMed  CAS  Google Scholar 

  • White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44

    PubMed  CAS  Google Scholar 

  • Williamson VM, Hussey RS (1996) Nematode pathogenesis and resistance in plants. Plant Cell 8(10):1735–1745

    Article  PubMed  CAS  Google Scholar 

  • Wrather JA, Koenning SR (2006) Estimates of disease effects on soybean yields in the United States 2003–2005. J Nematol 38:173–180

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors express deep gratitude for the continued support provided by the United Soybean Board under grant 5214. VPK is a recipient of a Research Initiation Grant provided by Mississippi State University. K-HK and S-KL were supported by a, BioGreen21 Grant (project no. 20080401034031) awarded to S-CP from the Rural Development Administration, Korea. The authors thank Dr. David Munroe and Nicole Lum at the Laboratory of Molecular Technology, SAIC-Frederick, National Cancer Institute, Frederick, Maryland 21701, USA for the Affymetrix® array hybridizations and data acquisition. All data, raw and normalized, are stored in the Soybean Genomics and Microarray Database (SGMD) (Alkharouf and Matthews 2004), available through the web site http://www.towson.edu/nalkharo/SGMD/SupplementalSites/pipeline. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the United States Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent P. Klink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klink, V.P., Kim, KH., Martins, V. et al. A correlation between host-mediated expression of parasite genes as tandem inverted repeats and abrogation of development of female Heterodera glycines cyst formation during infection of Glycine max . Planta 230, 53–71 (2009). https://doi.org/10.1007/s00425-009-0926-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-0926-2

Keywords

Navigation