Skip to main content

Advertisement

Log in

The signal molecule lysophosphatidylcholine in Eschscholzia californica is rapidly metabolized by reacylation

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In cultured cells of California poppy (Eschscholzia californica), lysophosphatidylcholine (LPC) triggers a signal path that finally induces alkaloid biosynthesis. LPC is transiently generated by elicitor-activated phospholipase A2 of the plasma membrane. Externally added LPC is rapidly acylated by a membrane-bound enzyme that shows the highest specific activity in the purified plasma membrane. The fatty acid incorporated into the sn-2 position of LPC is preferentially linoleic (18:2), which is the most abundant acyl component in the PC species of Eschscholzia cells, but a minor component of the pool of free fatty acids. The fatty acid at the sn-1 position of LPC is less important for substrate specificity. The capacity of LPC acylation by intact cells or isolated plasma membranes by far exceeds the rate of LPC generation by activated phospholipase A2 and is not limited by the availability of acyl donors. Metabolites other than phosphatidylcholine (PC) were not significantly produced from labeled LPC within 20 min, indicating that lysophospholipases are not significantly contributing to the short-time metabolism of LPC. It is concluded that reacylation to PC is the dominating process in the detoxication of LPC and ensures the transient character of its steady state concentrations, even at maximum phospholipase A2 activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PC:

Phosphatidlycholine

LPC:

Lysophosphatidylcholine

BODIPY® FL-sn1-C11-LPC:

2-decanoyl-1-(O-(11-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-propionyl)amino)undecyl)-sn-glycero-3-phosphocholine

bis-BODIPY® FL-C11-PC:

1,2-bis-(4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-undecanoyl)-sn-glycero-3-phosphocholine

MALDI-TOF MS:

Matrix-assisted laser-desorption time-of-flight mass spectrometry

HPTLC:

High performance thin layer chromatography

References

  • Bellamine J, Greppin H (1996) Proton transport ATP dependent driven by the plasma membrane ATPase from Arabidopsis thaliana leaves: biochemical characterization. Arch Sci 49:159–171

    CAS  Google Scholar 

  • Chien-Cheng H, Mao-Hsiung Y, Hwan-Wun L, Ying-Tung L (2000) Lysophosphatidylcholine induces apoptotic and non-apoptotic death in vascular smooth muscle cells: in comparison with oxidized LDL. Atherosclerosis 151:481–491

    Article  Google Scholar 

  • Cowan AK (2006) Phospholipids as plant growth regulators. Plant Growth Regul 48:97–109

    Article  CAS  Google Scholar 

  • Drissner D, Kunze G, Callewaert N, Gehrig P, Tamasloukht MB, Boller T, Felix G, Amrhein N, Bucher M (2007) Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis. Science 318:265–268

    Article  PubMed  CAS  Google Scholar 

  • Furukawa-Stoffer TL, Boyle RM, Thomson AL, Sarna MA, Weselake RJ (2003) Properties of lysophosphatidylcholine acyltransferase from Brassica napus cultures. Lipids 38:651–656

    Article  PubMed  CAS  Google Scholar 

  • Hanju Y, Doonam P, Youngsook L (1996) In vivo evidence for the involvement of phospholipase A and protein kinase in the signal transduction pathway for auxin-induced corn coleoptile elongation. Physiol Plant 96:359–368

    Article  Google Scholar 

  • Heinze M, Steighardt J, Gesell A, Schwartze W, Roos W (2007) Regulatory interaction of the Gα protein with phospholipase A2 in the plasma membrane of Eschscholzia californica. Plant J 52:1041–1051

    Article  PubMed  CAS  Google Scholar 

  • Larsson C, Sommarin M, Widell S (1994) Isolation of highly purified plant plasma membranes and separation of inside-out and right-side-out vesicles. Methods Enzymol 228:451–469

    Article  CAS  Google Scholar 

  • Larsson KE, Kjellberg JM, Tjellström H, Sandelius AS (2007) LysoPC acyltransferase/PC transacylase activities in plant plasma membrane and plasma membrane-associated endoplasmic reticulum. BMC Plant Biol 7:64

    Article  PubMed  CAS  Google Scholar 

  • Lee SM, Suh S, Kim S, Crain RC, Kwak JM, Nam HG, Lee YS (1997) Systemic elevation of phosphatidic acid and lysophospholipid levels in wounded plants. Plant J 12:547–556

    Article  CAS  Google Scholar 

  • Lee HY, Bahn SC, Kang YM, Lee KH, Kim HJ, Noh EK, Palta JP, Shin JS, Ryu SB (2003) Secretory low molecular weight phospholipase A2 plays important roles in cell elongation and shoot gravitropism in Arabidopsis. Plant Cell 15:1990–2002

    Article  PubMed  CAS  Google Scholar 

  • van Leeuwen W, Ökrész L, Bögre L, Munnik T (2004) Learning the lipid language of plant signalling. Trends Plant Sci 9:378–384

    Article  PubMed  CAS  Google Scholar 

  • Meijer HJG, Munnik T (2003) Phospholipid based signaling in plants. Annu Rev Plant Biol 54:265–306

    Article  PubMed  CAS  Google Scholar 

  • Meijer HJG, Arisz SA, van Himbergen JAJ, Musgrave A, Munnik T (2001) Hyperosmotic stress rapidly generates lyso-phosphatidic acid in Chlamydomonas. Plant J 25:541–548

    Article  PubMed  CAS  Google Scholar 

  • Mongrand S, Cassagne C, Bessoule J-J (2000) Import of lyso-phosphatidylcholine into chloroplasts likely at the origin of eukaryotic plastidial lipids. Plant Physiol 122:845–852

    Article  PubMed  CAS  Google Scholar 

  • Narváez-Vásquez J, Florin-Christensen J, Ryan CA (1999) Positional specificity of a phospholipase A activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves. Plant Cell 11:2249–2260

    Article  PubMed  Google Scholar 

  • Niewoehner DE, Rice K, Sinha AA, Wangensteen D (1987) Injurious effects of lysophosphatidylcholine on barrier properties of alveolar epithelium. J Appl Physiol 63:1979–1986

    PubMed  CAS  Google Scholar 

  • Papini R, De Michelis MI (1997) Changes in the level and activation state of the plasma membrane H(+)-ATPase during aging of red beet slices. Plant Physiol 114:857–862

    Article  PubMed  CAS  Google Scholar 

  • Paul R, Holk A, Scherer GFE (1998) Fatty acids and lysophospholipids as potential second messengers in auxin action. Rapid activation of phopholipase A2 activity by auxin in suspension-cultured parsley and soybean cells. Plant J 16:101–111

    Article  Google Scholar 

  • Petković M, Schiller J, Müller J, Müller M, Arnold K, Arnhold J (2001) The signal-to-noise-ratio as the measure for the quantification of lysophospholipids by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Analyst 126:1042–1050

    Article  PubMed  CAS  Google Scholar 

  • Pichler H, Gaigg B, Hrastnik C, Achleitner G, Kohlwein SD, Zellnig G, Perktold A, Daum G (2001) A subfraction of the yeast endoplasmic reticulum associates with the plasma membrane and has a high capacity to synthesize lipids. Eur J Biochem 268:2351–2361

    Article  PubMed  CAS  Google Scholar 

  • Roos W, Evers S, Hieke M, Tschöpe M, Schumann B (1998) Shifts of intracellular pH distribution as a part of the signal mechanism leading to the elicitation of benzophenanthridine alkaloids - Phytoalexin biosynthesis in cultured cells of Eschscholzia californica. Plant Physiol 118:349–364

    Article  PubMed  CAS  Google Scholar 

  • Roos W, Dordschbal B, Steighardt J, Hieke M, Weiß D, Saalbach G (1999) A redox-dependent, G-protein-coupled phospholipase A of the plasma membrane is involved in the elicitation of alkaloid biosynthesis in Eschscholzia californica. Biochim Biophys Acta 1448:390–402

    Article  PubMed  CAS  Google Scholar 

  • Roos W, Viehweger K, Dordschbal K, Schumann B, Steighardt J, Schwartze W (2006) Intracellular pH signals in the induction of secondary pathways—the case of Eschscholzia californica. J Plant Physiol 163:369–381

    Article  PubMed  CAS  Google Scholar 

  • Rustenbeck I, Münster W, Lenzen S (1996) Relation between accumulation of phospholipase A2 reaction products and Ca2+ release in isolated liver mitochondria. Biochim Biophys Acta 1304:129–138

    PubMed  Google Scholar 

  • Ryan CA (2000) The systemin signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta 1477:112–121

    PubMed  CAS  Google Scholar 

  • Ryu SB (2004) Phospholipid-derived signaling mediated by phospholipase A in plants. Trends Plant Sci 9:229–235

    Article  PubMed  CAS  Google Scholar 

  • Scherer GFE (1994) Phospholipid signalling by phospholipase A2 in plants. The role of mastoparan and lysophospholipids as weak “auxin-like” agonists. J Exp Biol 48:229–242

    CAS  Google Scholar 

  • Scherer GFE, Paul RU, Holk A (2000) Phospholipase A2 in auxin and elicitor signal transduction in cultured parsley cells (Petroselinum crispum L.). Plant Growth Regul 32:123–128

    Article  CAS  Google Scholar 

  • Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10:368–375

    Article  PubMed  CAS  Google Scholar 

  • Testet E, Bessoule JJ, Mongrand S, Guillot-Salomon T, Cantrel C, Cassagne C (1996) Occurence of an acyl-CoA:1-acylglycerolphosphorylcholine acyltransferase in plant mitochondria. FEBS Lett 399:87–91

    Article  PubMed  CAS  Google Scholar 

  • Viehweger K, Dordschbal B, Roos W (2002) Elicitor-activated phospholipase A2 generates lysophosphatidylcholines that mobilize the vacuolar H+ pool for pH signaling via the activation of Na+ - dependent proton fluxes. Plant Cell 14:1509–1525

    Article  PubMed  CAS  Google Scholar 

  • Viehweger K, Schwartze W, Schumann B, Lein W, Roos W (2006) The Gα protein controls a pH dependent signal path to the induction of phytoalexin biosynthesis in Eschscholzia californica. Plant Cell 18:1510–1523

    Article  PubMed  CAS  Google Scholar 

  • Vogler WR, Olson AC, Okamoto S, Shoji M, Raynor RL, Kuo JF, Berdel WE, Eibl H, Hajdu J, Nomura H (1991) Comparison of selective cytotoxicity of alkyl lysophospholipids. Lipids 26:1418–1423

    Article  PubMed  CAS  Google Scholar 

  • Xing T, Higgins VJ, Blumwald E (1996) Regulation of plant defense response to fungal pathogens—two types of protein kinases in the reversible phosphorylation of the host plasma membrane H+-ATPase. Plant Cell 8:555–564

    Article  PubMed  CAS  Google Scholar 

  • Yamashita A, Sugiura T, Waku K (1997) Acyltransferases and transacylases involved in fatty acid remodeling of phospholipids and metabolism of bioactive lipids in mammalian cells. J Biochem 122:1–16

    PubMed  CAS  Google Scholar 

  • Zhang W, Yu L, Zhang Y, Wang X (2005) Phospholipase D in the signaling networks of plant response to abscisic acid and reactive oxygen species. Biochim Biophys Acta 1736:1–9

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was suported by the Deutsche Forschungsgemeinschaft (Forschergruppe Zellspezialisierung). The help of Dr. Michael Heinze, this laboratory, with the PLA2 assay, and of Dr. Angelica Schierhorn, Max Planck Arbeitsgruppe ‘Enzymatik der Proteinfaltung’, Halle, with the MS analysis of phospholipids, is gratefully acknowledged. We are also grateful for the expert technical assistance by Gabriele Danders and Kathrin Thomasch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Roos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartze, W., Roos, W. The signal molecule lysophosphatidylcholine in Eschscholzia californica is rapidly metabolized by reacylation. Planta 229, 183–191 (2008). https://doi.org/10.1007/s00425-008-0819-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0819-9

Keywords

Navigation