Skip to main content
Log in

Two copies of 4-(cytidine 5′-diphospho)-2-C-methyl-d-erythritol kinase (CMK) gene in Ginkgo biloba: molecular cloning and functional characterization

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

4-(Cytidine 5′-diphospho)-2-C-methyl-d-erythritol kinase (CMK or YchB), the fourth enzyme of the 2-C-methyl-d-erythritol 4-phosphate pathway, phosphorylates the 2-hydroxyl group of 4-(cytidine 5′-diphospho)-2-C-methyl-d-erythritol in the presence of ATP. Two isogenes encoding CMK (GbCMK1 and GbCMK2) were cloned and characterized from Ginkgo biloba. The activities of both isozymes were confirmed by complementation assay using Escherichia coli NMW29, a ychB knock-out mutant. The transcript profiles of GbCMKs in the radicles and the cotyledons of the cultured Ginkgo biloba embryos demonstrated that the transcript levels of GbCMK1 were similar in both organs, whereas that of GbCMK2 was predominantly high in the ginkgolide-synthesizing radicles. Selective increases in the transcript abundance of GbCMK2 in the radicles, induced by light and methyl jasmonate treatments, were observed. These differential induction patterns of the transcripts imply GbCMK1 and GbCMK2 respectively have high correlations with the primary and the secondary metabolisms. The transit peptides of both isozymes delivered the fused green fluorescent protein (GFP) into the chloroplast in the Arabidopsis and the Nicotiana transient expression systems; interestingly, the transit peptide of GbCMK1 delivered the GFP protein into the cytosol and the nucleus in addition to the chloroplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CDP-ME:

4-(Cytidine 5′-diphospho)-2-C-methyl-d-erythritol

CMK:

CDP-ME kinase

DMAPP:

Dimethylallyl diphosphate

DXR:

1-Deoxy-d-xylulose 5-phosphate reductoisomerase

DXS:

1-Deoxy-d-xylulose 5-phosphate synthase

GFP:

Green fluorescent protein

GGPP:

Geranylgeranyl diphosphate

HMGR:

HMG-CoA reductase

HMGS:

HMG-CoA synthase

IDS:

1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase

IPP:

Isopentenyl diphosphate

MEP:

2-C-methyl-d-erythritol 4-phosphate

MVA:

Mevalonic acid

References

  • Abel S, Theologis A (1994) Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J 5:421–427

    Article  PubMed  CAS  Google Scholar 

  • Ahn CS, Pai HS (2008) Physiological function of IspE, a plastid MEP pathway gene for isoprenoid biosynthesis, in organelle biogenesis and cell morphogenesis in Nicotiana benthamiana. Plant Mol Biol 66:503–517

    Article  PubMed  CAS  Google Scholar 

  • Alex D, Bach TJ, Chye ML (2000) Expression of Brassica juncea 3-hydroxy-3-methylglutaryl CoA synthase is developmentally regulated and stress-responsive. Plant J 22:415–426

    Article  PubMed  CAS  Google Scholar 

  • Allona I, Quinn M, Shoop E, Swope K, St Cyr S, Carlis J, Riedl J, Retzel E, Campbell MM, Sederoff R, Whetten RW (1998) Analysis of xylem formation in pine by cDNA sequencing. Proc Natl Acad Sci USA 95:9693–9698

    Article  PubMed  CAS  Google Scholar 

  • Braquet P, Spinnewyn B, Braquet M, Bourgain RH, Taylor JE, Etienne A, Drieu K (1985) BN 52021 and related compounds: a new series of highly specific PAF-acether antagonists isolated from Ginkgo biloba. Blood Vessels 16:559–572

    Google Scholar 

  • Byun-McKay SA, Geeta R (2007) Protein subcellular relocalization: a new perspective on the origin of novel genes. Trends Ecol Evol 22:338–344

    Article  PubMed  Google Scholar 

  • David SJ, Vierstra RD (1996) Soluble derivatives of green fluorescent protein (GFP) for use in Arabidopsis thaliana. Weeds World 3:43–48

    Google Scholar 

  • Eisenreich W, Bacher A, Arigoni D, Rohdich F (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61:1401–1426

    Article  PubMed  CAS  Google Scholar 

  • Enjuto M, Balcells L, Campos N, Caelles C, Arro M, Boronat A (1994) Arabidopsis thaliana contains two differentially expressed 3-hydroxy-3-methylglutaryl-CoA reductase genes, which encode microsomal forms of the enzyme. Proc Natl Acad Sci USA 91:927–931

    Article  PubMed  CAS  Google Scholar 

  • Heilmann I, Pidkowich MS, Girke T, Shanklin J (2004) Switching desaturase enzyme specificity by alternate subcellular targeting. Proc Natl Acad Sci USA 101:10266–10271

    Article  PubMed  CAS  Google Scholar 

  • Jaracz S, Nakanishi K, Jensen AA, Strømgaard K (2004) Ginkgolides and glycine receptors: a structure-activity relationship study. Chemistry 10:1507–1518

    Article  PubMed  CAS  Google Scholar 

  • Keeling CI, Bohlmann J (2006a) Diterpene resin acids in conifers. Phytochemistry 67:2415–2423

    Article  PubMed  CAS  Google Scholar 

  • Keeling CI, Bohlmann J (2006b) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol 170:657–675

    Article  PubMed  CAS  Google Scholar 

  • Kim SM, Kuzuyama T, Chang YJ, Kim SU (2005) Functional identification of Ginkgo biloba 1-Deoxy-d-xylulose 5-phosphate synthase (DXS) gene by using Escherichia coli disruptants defective in DXS gene. Agric Chem Biotechnol 48:101–104

    CAS  Google Scholar 

  • Kim SM, Kuzuyama T, Chang YJ, Kim SU (2006a) Cloning and characterization of 2-C-methyl-d-erythritol 2, 4-cyclodiphosphate synthase (MECS) gene from Ginkgo biloba. Plant Cell Rep 25:829–835

    Article  PubMed  CAS  Google Scholar 

  • Kim SM, Kuzuyama T, Chang YJ, Kwon HJ, Kim SU (2006b) Cloning and functional characterization of 2-C-methyl-d-erythritol 4-phosphate cytidyltransferase (GbMECT) gene from Ginkgo biloba. Phytochemistry 67:1435–1441

    Article  PubMed  CAS  Google Scholar 

  • Kim SM, Kuzuyama T, Chang YJ, Song KS, Kim SU (2006c) Identification of class 2 1-deoxy-d-xylulose 5-phosphate synthase and 1-deoxy-d-xylulose 5-phosphate reductoisomerase genes from Ginkgo biloba and their transcription in embryo culture with respect to ginkgolide biosynthesis. Planta Med 72:234–240

    Article  PubMed  CAS  Google Scholar 

  • Kim SM, Kuzuyama T, Chang YJ, Kobayashi A, Sando T, Kim SU (2008) 1-Hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IDS) is encoded by multicopy genes in gymnosperms Ginkgo biloba and Pinus taeda. Planta 227:287–298

    Article  PubMed  CAS  Google Scholar 

  • Kuzuyama T, Takagi M, Kaneda K, Dairi T, Seto H (2000) Studies on the nonmevalonate pathway: conversion of 4-(cytidine 5′-diphospho)-2-C-methyl-d-erythritol to its 2-phospho derivative by 4-(cytidine 5′-diphospho)-2-C-methyl-d-erythritol kinase. Tetrahedron Lett 41:2925–2928

    Article  CAS  Google Scholar 

  • Lange BM, Ghassemian M (2003) Genome organization in Arabidopsis thaliana: a survey for genes involved in isoprenoid and chlorophyll metabolism. Plant Mol Biol 51:925–948

    Article  PubMed  CAS  Google Scholar 

  • Leivar P, Gonzalez VM, Castel S, Trelease RN, Lopez-Iglesias C, Arro M, Boronat A, Campos N, Ferrer A, Fernandez-Busquets X (2005) Subcellular localization of Arabidopsis 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Plant Physiol 137:57–69

    Article  PubMed  CAS  Google Scholar 

  • Li WH, Yang J, Gu X (2005) Expression divergence between duplicate genes. Trends Genet 21:602–607

    Article  PubMed  Google Scholar 

  • Liao Z, Chen M, Gong Y, Guo L, Tan Q, Feng X, Sun X, Tan F, Tang K (2004) A new geranylgeranyl diphosphate synthase gene from Ginkgo biloba, which intermediates the biosynthesis of the key precursor for ginkgolides. DNA Seq 15:153–158

    PubMed  CAS  Google Scholar 

  • Lüttgen H, Rohdich F, Herz S, Wungsintaweekul J, Hecht S, Schuhr CA, Fellermeier M, Sagner S, Zenk MH, Bacher A, Eisenreich W (2000) Biosynthesis of terpenoids: YchB protein of Escherichia coli phosphorylates the 2-hydroxy group of 4-diphosphocytidyl-2C-methyl-d-erythritol. Proc Natl Acad Sci USA 97:1062–1067

    Article  PubMed  Google Scholar 

  • Mangas S, Bonfill M, Osuna L, Moyano E, Tortoriello J, Cusido RM, Pinol MT, Palazon J (2006) The effect of methyl jasmonate on triterpene and sterol metabolisms of Centella asiatica, Ruscus aculeatus and Galphimia glauca cultured plants. Phytochemistry 67:2041–2049

    Article  PubMed  CAS  Google Scholar 

  • Martin D, Tholl D, Gershenzon J, Bohlmann J (2002) Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol 129:1003–1018

    Article  PubMed  CAS  Google Scholar 

  • Miallau L, Alphey MS, Kemp LE, Leonard GA, McSweeney SM, Hecht S, Bacher A, Eisenreich W, Rohdich F, Hunter WN (2003) Biosynthesis of isoprenoids: crystal structure of 4-diphosphocytidyl-2C-methyl-d-erythritol kinase. Proc Natl Acad Sci USA 100:9173–9178

    Article  PubMed  CAS  Google Scholar 

  • Nagegowda DA, Ramalingam S, Hemmerlin A, Bach TJ, Chye ML (2005) Brassica juncea HMG-CoA synthase: localization of mRNA and protein. Planta 221:844–856

    Article  PubMed  CAS  Google Scholar 

  • Okada K, Saito T, Nakagawa T, Kawamukai M, Kamiya Y (2000) Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiol 122:1045–1056

    Article  PubMed  CAS  Google Scholar 

  • Phillips MA, Walter MH, Ralph SG, Dabrowska P, Luck K, Urós EM, Boland W, Strack D, Rodríguez-Concepción M, Bohlmann J, Gershenzon J (2007) Functional identification and differential expression of 1-deoxy-d-xylulose 5-phosphate synthase in induced terpenoid resin formation of Norway spruce (Picea abies). Plant Mol Biol 65:243–257

    Article  PubMed  CAS  Google Scholar 

  • Ralph SG, Yueh H, Friedmann M, Aeschliman D, Zeznik JA, Nelson CC, Butterfield YS, Kirkpatrick R, Liu J, Jones SJ, Marra MA, Douglas CJ, Ritland K, Bohlmann J (2006) Conifer defence against insects: microarray gene expression profiling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (Choristoneura occidentalis) or white pine weevils (Pissodes strobi) reveals large-scale changes of the host transcriptome. Plant Cell Environ 29:1545–1570

    Article  PubMed  Google Scholar 

  • Rodríguez-Concepción M (2004) The MEP pathway: a new target for the development of herbicides, antibiotics and antimalarial drugs. Curr Pharm Des 10:2391–2400

    Article  PubMed  Google Scholar 

  • Rodríguez-Concepción M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089

    Article  PubMed  Google Scholar 

  • Rohdich F, Wungsintaweekul J, Luttgen H, Fischer M, Eisenreich W, Schuhr CA, Fellermeier M, Schramek N, Zenk MH, Bacher A (2000) Biosynthesis of terpenoids: 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase from tomato. Proc Natl Acad Sci USA 97:8251–8256

    Article  PubMed  CAS  Google Scholar 

  • Rolland F, Gonzalez EB, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:676–709

    Article  Google Scholar 

  • Schepmann HG, Pang J, Matsuda SPT (2001) Cloning and characterization of Ginkgo biloba levopimaradiene synthase, which catalyzed the first committed step in the ginkgolide biosynthesis. Arch Biochem Biophys 392:263–269

    Article  PubMed  CAS  Google Scholar 

  • Schwarz M, Arigoni D (1999) Ginkgolide biosynthesis. In: Cane D (ed) Comprehensive natural products chemistry, vol 2. Pergamon, Oxford, pp 367–400

    Google Scholar 

  • Seetang-Nun Y, Sharkey TD, Suvachittanont W (2008) Molecular cloning and characterization of two cDNAs encoding 1-deoxy-d-xylulose 5-phosphate reductoisomerase from Hevea brasiliensis. J Plant Physiol 165:991–1002

    Article  PubMed  CAS  Google Scholar 

  • Trapp SC, Croteau RB (2001) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158:811–832

    PubMed  CAS  Google Scholar 

  • van Schie CC, Haring MA, Schuurink RC (2007) Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol Biol 64:251–263

    Article  PubMed  CAS  Google Scholar 

  • Wada T, Kuzuyama T, Satoh S, Kuramitsu S, Yokoyama S, Unzai S, Tame JR, Park SY (2003) Crystal structure of 4-(cytidine 5′-diphospho)-2-C-methyl-d-erythritol kinase, an enzyme in the non-mevalonate pathway of isoprenoid synthesis. J Biol Chem 278:30022–30027

    Article  PubMed  CAS  Google Scholar 

  • Walter MH, Hans J, Strack D (2002) Two distantly related genes encoding 1-deoxy-d-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots. Plant J 31:243–254

    Article  PubMed  CAS  Google Scholar 

  • Yin JL, Shackel NA, Zekry A, McGuinness PH, Richards C, Putten KV, McCaughan GW, Eris JM, Bishop GA (2001) Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for measurement of cytokine and growth factor mRNA expression with fluorogenic probes or SYBR Green I. Immunol Cell Biol 79:213–221

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the supports given by the Korea Science and Engineering Foundation (KOSEF 981-0608-040-2) through PMRC, and the Brain Korea 21 program administered by the Ministry of Education, Science and Technology, Korea, through the Department of Agricultural Biotechnology, SNU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Un Kim.

Additional information

S.-M. Kim and Y.-B. Kim contributed equally to this work.

GenBank accession numbers: GbCMK1 (DQ102358), GbCMK2 (DQ102359).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SM., Kim, YB., Kuzuyama, T. et al. Two copies of 4-(cytidine 5′-diphospho)-2-C-methyl-d-erythritol kinase (CMK) gene in Ginkgo biloba: molecular cloning and functional characterization. Planta 228, 941–950 (2008). https://doi.org/10.1007/s00425-008-0794-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0794-1

Keywords

Navigation