Skip to main content
Log in

Electron tomographic characterization of a vacuolar reticulum and of six vesicle types that occupy different cytoplasmic domains in the apex of tip-growing Chara rhizoids

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

We provide a 3D ultrastructural analysis of the membrane systems involved in tip growth of rhizoids of the green alga Chara. Electron tomography of cells preserved by high-pressure freeze fixation has enabled us to distinguish six different types of vesicles in the apical cytoplasm where the tip growth machinery is accommodated. The vesicle types are: dark and light secretory vesicles, plasma membrane-associated clathrin-coated vesicles (PM-CCVs), Spitzenkoerper-associated clathrin-coated vesicles (Sp-CCVs) and coated vesicles (Sp-CVs), and microvesicles. Each of these vesicle types exhibits a distinct distribution pattern, which provides insights into their possible function for tip growth. The PM-CCVs are confined to the cytoplasm adjacent to the apical plasma membrane. Within this space they are arranged in clusters often surrounding tubular plasma membrane invaginations from which CCVs bud. This suggests that endocytosis and membrane recycling are locally confined to specialized apical endocytosis sites. In contrast, exocytosis of secretory vesicles occurs over the entire membrane area of the apical dome. The Sp-CCVs and the Sp-CVs are associated with the aggregate of endoplasmic reticulum membranes in the center of the growth-organizing Spitzenkoerper complex. Here, Sp-CCVs are seen to bud from undefined tubular membranes. The subapical region of rhizoids contains a vacuolar reticulum that extends along the longitudinal cell axis and consists of large, vesicle-like segments interconnected by thin tubular domains. The tubular domains are encompassed by thin filamentous structures resembling dynamin spirals which could drive peristaltic movements of the vacuolar reticulum similar to those observed in fungal hyphae. The vacuolar reticulum appears to serve as a lytic compartment into which multivesicular bodies deliver their internal vesicles for molecular recycling and degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

D-SV:

Dark secretory vesicle

ER:

Endoplasmic reticulum

L-SV:

Light secretory vesicle

MV:

Microvesicle

PM:

Plasma membrane

PM-CCV:

PM-associated clathrin-coated vesicle

Sp-CCV:

Spitzenkoerper-associated CCV

Sp-CV:

Spitzenkoerper-associated coated vesicle

SV:

Secretory vesicle

References

  • Ashford AE (1998) Dynamic pleiomorphic vacuole systems: are they endosomes and transport compartments in fungal hyphae? Adv Bot Res 28:119–159

    Article  Google Scholar 

  • Bartnicki-Garcia S, Hergert F, Gierz G (1989) Computer simulation of fungal morphogenesis and the mathematical basis for hyphal tip growth. Protoplasma 153:46–57

    Article  Google Scholar 

  • Bartnik E, Sievers A (1988) In vivo observations of a spherical aggregate of endoplasmic reticulum and of Golgi vesicles in the tip of fast-growing Chara rhizoids. Planta 176:1–9

    Article  Google Scholar 

  • Battey NH, James NC, Greenland AJ, Brownlee C (1999) Exocytosis and endocytosis. Plant Cell 11:643–659

    Article  PubMed  CAS  Google Scholar 

  • Blackbourn HD, Jackson AP (1996) Plant clathrin heavy chain: sequence analysis and restricted localisation in growing pollen tubes. J Cell Sci 109:777–787

    PubMed  CAS  Google Scholar 

  • Blancaflor EB, Masson PH (2003) Plant gravitropism. Unraveling the ups and downs of a complex process. Plant Physiol 133:1677–1690

    Article  PubMed  CAS  Google Scholar 

  • Bonnett HT, Newcomb EH (1966) Coated vesicles and other cytoplasmic components of growing root hairs of radish. Protoplasma 62:59–75

    Article  Google Scholar 

  • Braun M (2001) Association of spectrin-like proteins with the actin-organized aggregate of endoplasmic reticulum in the Spitzenkörper of gravitropically tip-growing plant cells. Plant Physiol 125:1611–1620

    Article  PubMed  CAS  Google Scholar 

  • Braun M, Limbach C (2006) Rhizoids and protonemata of characean algae—unicellular model systems for research on polarized growth and plant gravity sensing. Protoplasma 229:133–142

    Article  PubMed  CAS  Google Scholar 

  • Braun M, Richter P (1999) Relocalization of the calcium gradient and a dihydropyridine receptor is involved in upward bending by bulging of Chara protonemata, but not in downward bending by bowing of Chara rhizoids. Planta 209:414–423

    Article  PubMed  CAS  Google Scholar 

  • Braun M, Hauslage J, Czogalla A, Limbach C (2004) Tip-localized actin polymerization and remodeling, reflected by the localization of ADF, profilin and villin, are fundamental for gravitropic tip growth in characean rhizoids. Planta 219:379–388

    Article  PubMed  CAS  Google Scholar 

  • Derksen J, Rutten T, Lichtscheidl IK, de Win AHN, Pierson ES, Rongen G (1995) Quantitative analysis of the distribution of organelles in tobacco pollen tubes: implications for exocytosis and endocytosis. Protoplasma 188:267–276

    Article  Google Scholar 

  • Derksen J, Knuiman B, Hoedemaekers K, Guyon A, Bonhomme S, Pierson ES (2002) Growth and cellular organization of Arabidopsis pollen tubes in vitro. Sex Plant Reprod 15:133–139

    Article  Google Scholar 

  • Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17:520–527

    Article  PubMed  CAS  Google Scholar 

  • Donohoe BS, Mogelsvang S, Staehelin LA (2006) Electron tomography of ER, Golgi and related membrane systems. Methods 39:154–162

    Article  PubMed  CAS  Google Scholar 

  • Donohoe BS, Kang BY, Staehelin LA (2007) Identification and characterization of COPIa- and COPIb-type vesicle classes associated with plant and algal Golgi. Proc Natl Acad Sci USA 104:163–168

    Article  PubMed  CAS  Google Scholar 

  • Emons AMC, Traas JA (1986) Coated pits and coated vesicles on the plasma membrane of plant cells. Eur J Cell Biol 41:57–64

    Google Scholar 

  • Galway ME, Rennie PJ, Fowke LC (1993) Ultrastructure of the endocytotic pathway in glutaraldehyde-fixed and high-pressure frozen/freeze-substituted protoplasts of white spruce (Picea glauca). J Cell Sci 106:847–858

    PubMed  CAS  Google Scholar 

  • Geitmann A, Emons AM (2000) The cytoskeleton in plant and fungal cell tip growth. J Microsc 198:218–245

    Article  PubMed  CAS  Google Scholar 

  • Girbardt M (1969) Die Ultrastruktur der Apikalregion von Pilzhyphen. Protoplasma 67:413–441

    Article  Google Scholar 

  • Harris SD, Read ND, Roberson RW, Shaw B, Seiler S, Plamann M, Momany M (2005) Polarisome meets Spitzenkörper: microscopy, genetics, and genomics converge. Eukaryot Cell 4:225–229

    Article  PubMed  CAS  Google Scholar 

  • Hejnowicz Z, Heinemann B, Sievers A (1977) Tip growth: patterns of growth rate and stress in the Chara rhizoid. Z Pflanzenphysiol 81:409–424

    Google Scholar 

  • Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17:159–187

    Article  PubMed  CAS  Google Scholar 

  • Hicks GR, Rojo E, Hong S, Carter DG, Raikhel NV (2004) Germinating pollen has tubular vacuoles, displays highly dynamic vacuole biogenesis, and requires VACUOLESS1 for proper function. Plant Physiol 134:1227–1239

    Article  PubMed  CAS  Google Scholar 

  • Hoch HC, Howard RJ (1980) Ultrastructure of freeze-substituted hyphae of the basidiomycete Laetisaria arvalis. Protoplasma 103:281–297

    Article  Google Scholar 

  • Hohmann-Marriott MF, Uchida M, van de Meene AM, Garret M, Hjelm BE, Kokoori S, Roberson RW (2006) Application of electron tomography to fungal ultrastructure studies. New Phytol 172:208–220

    Article  PubMed  Google Scholar 

  • Howard RJ, Aist JR (1979) Hyphal tip cell ultrastructure of the fungus Fusarium: improved preservation by freeze-substitution. J Ultrastruct Res 66:224–234

    Article  PubMed  CAS  Google Scholar 

  • Holstein SHE (2002) Clathrin and plant endocytosis. Traffic 3:614–620

    Article  PubMed  CAS  Google Scholar 

  • Hummel E, Schmickl R, Hinz G, Hillmer S, Robinson DG (2007) Brefeldin A action and recovery in Chlamydomonas are rapid and involve fusion and fission of Golgi cisternae. Plant Biol 9:489–501

    Article  PubMed  CAS  Google Scholar 

  • Hyde GJ, Davies D, Perasso L, Cole L, Ashford AE (1999) Microtubules, but not actin microfilaments, regulate vacuole motility and morphology in hyphae of Pisolithus tinctorius. Cell Motil Cytoskeleton 42:114–124

    Article  PubMed  CAS  Google Scholar 

  • Kiss JZ, Staehelin LA (1993) Structural polarity in the Chara rhizoid: a reevaluation. Am J Bot 80:273–282

    Article  PubMed  CAS  Google Scholar 

  • Kiss JZ, Giddings TH, Staehelin LA, Sack FD (1990) Comparison of the ultrastructure of conventionally fixed and high pressure frozen/freeze substituted root tips of Nicotiana and Arabidopsis. Protoplasma 157:64–74

    Article  PubMed  CAS  Google Scholar 

  • Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76

    Article  PubMed  CAS  Google Scholar 

  • Lancelle SA, Hepler PK (1992) Ultrastructure of freeze-substituted pollen tubes of Lilium longiflorum. Protoplasma 167:215–230

    Article  Google Scholar 

  • Limbach C, Hauslage J, Schäfer C, Braun M (2005) How to activate a plant gravireceptor. Early mechanisms of gravity sensing studied in characean rhizoids during parabolic flights. Plant Physiol 139:1030–1040

    Article  PubMed  CAS  Google Scholar 

  • Lučić V, Förster F, Baumeister W (2005) Structural studies by electron tomography: from cells to molecules. Annu Rev Biochem 74:833–865

    Article  PubMed  Google Scholar 

  • Malhó R, Castanho Coelho P, Pierson E, Derksen J (2005) Endocytosis and membrane recycling in pollen tubes. In: Šamaj J et al (eds) Plant endocytosis. Springer, Berlin, pp 277–291

    Chapter  Google Scholar 

  • Mastronarde DN (1997) Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struct Biol 120:343–352

    Article  PubMed  CAS  Google Scholar 

  • Meindl U, Lancelle S, Hepler PK (1992) Vesicle production and fusion during lobe formation in Micrasterias visualized by high-pressure freeze fixation. Protoplasma 170:104–114

    Article  Google Scholar 

  • Moscatelli A, Ciampolini F, Rodighiero S, Onelli E, Cresti M, Santo N, Idilli A (2007) Distinct endocytic pathways identified in tobacco pollen tubes using charged nanogold. J Cell Sci 120:3804–3819

    Article  PubMed  CAS  Google Scholar 

  • Otegui MS, Mastronarde DN, Kang BH, Bednarek SY, Staehelin LA (2001) Three-dimensional analysis of syncytial-type cell plates during endosperm cellularization visualized by high resolution electron tomography. Plant Cell 13:2033–2051

    Article  PubMed  CAS  Google Scholar 

  • Roberson RW, Fuller MS (1988) Ultrastructural aspects of the hyphal tip of Sclerotium rolfsii preserved by freeze substitution. Protoplasma 146:143–149

    Article  Google Scholar 

  • Robertson JG, Lyttleton P (1982) Coated and smooth vesicles in the biogenesis of cell walls, plasma membranes, infection threads and peribacteroid membranes in root hairs and nodules of white clover. J Cell Sci 58:63–78

    PubMed  CAS  Google Scholar 

  • Robinson DG, Bäumer M, Hinz G, Hohl I (1998a) Vesicle transfer of storage proteins to the vacuoles: the role of the Golgi apparatus and multivesicular bodies. J Plant Physiol 152:659–667

    CAS  Google Scholar 

  • Robinson DG, Hinz G, Holstein SE (1998b) The molecular characterization of transport vesicles. Plant Mol Biol 38:49–76

    Article  PubMed  CAS  Google Scholar 

  • Robinson DG, Rogers JC, Hinz G (2000) Post-Golgi, prevacuolar compartments. Annu Plant Rev 5:270–298

    CAS  Google Scholar 

  • Roy S, Eckard KJ, Lancelle S, Hepler PK, Lord EM (1997) High-pressure freezing improves the ultrastructural preservation of in vivo grown lily pollen tubes. Protoplasma 200:87–98

    Article  Google Scholar 

  • Royle SJ, Lagnado L (2003) Endocytosis at the synaptic terminal. J Physiol 553:345–355

    Article  PubMed  CAS  Google Scholar 

  • Seguí-Simarro JM, Staehelin LA (2005) Cell cycle-dependent changes in Golgi stacks, vacuoles, clathrin-coated vesicles and multivesicular bodies in meristematic cells of Arabidopsis thaliana: a quantitative and spatial analysis. Planta 223:223–236

    Article  PubMed  CAS  Google Scholar 

  • Seguí-Simarro JM, Austin JR, White EA, Staehelin LA (2004) Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. Plant Cell 16:836–856

    Article  PubMed  CAS  Google Scholar 

  • Shepherd VA, Orlovich DA, Ashford AE (1993) A dynamic continuum of pleiomorphic tubules and vacuoles in growing hyphae of a fungus. J Cell Sci 104:495–507

    Google Scholar 

  • Sievers A (1963a) Beteiligung des Golgi-Apparates bei der Bildung der Zellwand von Wurzelhaaren. Protoplasma 56:188–192

    Article  Google Scholar 

  • Sievers A (1963b) Über die Feinstruktur des Plasmas wachsender Wurzelhaare. Z Naturforsch 18b:830–836

    Google Scholar 

  • Sievers A (1965) Elektronenmikroskopische Untersuchungen zur geotropischen Reaktion. I. Über Besonderheiten im Feinbau der Rhizoide von Chara foetida. Z Pflanzenphysiol 53:193–213

    Google Scholar 

  • Sievers A (1967) Elektronenmikroskopische Untersuchungen zur geotropischen Reaktion. II. Die polare Organisation des normal wachsenden Rhizoids von Chara foetida. Protoplasma 64:225–253

    Article  Google Scholar 

  • Staehelin LA, Giddings TH, Kiss JZ, Sack FD (1990) Macromolecular differentiation of Golgi stacks in root tips of Arabidopsis and Nicotiana seedlings as visualized in high pressure frozen and freeze-substituted samples. Protoplasma 157:75–91

    Article  PubMed  CAS  Google Scholar 

  • Steer MW (1988) Plasma membrane turnover in plant cells. J Exp Bot 39:987–996

    Article  Google Scholar 

  • Studer D, Hennecke H, Müller M (1992) High-pressure freezing of soybean nodules leads to an improved preservation of ultrastructure. Planta 188:155–163

    Article  Google Scholar 

  • Tahara H, Yokota E, Igarashi H, Orii H, Yao M, Sonobe S, Hashimoto T, Hussey PJ, Shimmen T (2007) Clathrin is involved in organization of mitotic spindle and phragmoplast as well as in endocytosis in tobacco cell cultures. Protoplasma 230:1–11

    Article  PubMed  CAS  Google Scholar 

  • Takei K, Mundigl O, Daniell L, De Camilli P (1996) The synaptic vesicle cycle: a single vesicle budding step involving clathrin and dynamin. J Cell Biol 133:1237–1250

    Article  PubMed  CAS  Google Scholar 

  • Tanchak MA, Griffing LR, Merse BG, Fowke LC (1984) Endocytosis of cationized ferritin by coated vesicles of soybean protoplasts. Planta 162:481–486

    Article  CAS  Google Scholar 

  • Teng H, Wilkinson RS (2000) Clathrin-mediated endocytosis near active zones in snake motor boutons. J Neurosci 20:7986–7993

    PubMed  CAS  Google Scholar 

  • Tse YC, Mo B, Hillmer S, Zhao M, Lo SW, Robinson DG, Jiang L (2004) Identification of multivesicular bodies as prevacuolar compartments in Nicotiana tabacum BY-2 cells. Plant Cell 16:672–693

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson RS, Cole JC (2001) Resolving the Heuser-Ceccarelli debate. Trends Neurosci 24:195–197

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Zachary Gergely and Byung-Ho Kang (MCDB, University of Colorado, Boulder, CO, USA) for their valuable help. Many thanks are also due to the members of the Boulder Laboratory for 3D Electron Microscopy of Cells (MCDB, University of Colorado, Boulder, CO, USA, Grant RR00592). Brigitte Buchen (University of Bonn, Germany) is gratefully acknowledged for helpful comments and critical reading of the manuscript. This work was supported by the Deutsches Zentrum für Luft- und Raumfahrt (DLR) on behalf of the Bundesministerium für Wirtschaft und Technologie (grant 50WB0515), by National Institute of Health Grant GM 61306 to L.A.S., and by a fellowship of the Cusanuswerk to C.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Limbach.

Electronic supplementary material

Below is the link to the electronic supplementary material.

425_2007_684_MOESM1_ESM.pdf

425_2007_684_MOESM2_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Limbach, C., Staehelin, L.A., Sievers, A. et al. Electron tomographic characterization of a vacuolar reticulum and of six vesicle types that occupy different cytoplasmic domains in the apex of tip-growing Chara rhizoids. Planta 227, 1101–1114 (2008). https://doi.org/10.1007/s00425-007-0684-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0684-y

Keywords

Navigation