Skip to main content
Log in

Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Arabidopsis shoots regenerate from root explants in tissue culture through a two-step process requiring preincubation on an auxin-rich callus induction medium (CIM) followed by incubation on a cytokinin-rich shoot induction medium (SIM). During CIM preincubation, root explants acquire competence to respond to shoot induction signals. During CIM preincubation, pericycle cells in root explants undergo cell divisions and dedifferentiate, losing the expression of a pericycle cell-specific marker. These cells acquire competence to form green callus only after one day CIM preincubation and to form shoots after 2–3 days CIM preincubation. Reversible DNA synthesis inhibitors interfered with the acquisition of competence to form shoots. Genes requiring CIM preincubation for upregulation on SIM were identified by microarray analysis and included RESPONSE REGULATOR 15 (ARR15), POLYGALACTURONASE INHIBITING PROTEIN 2 (PGIP2) and WUSCHEL (WUS). These genes served as developmental markers for the acquisition of competence because the CIM preincubation requirements for ARR15 and PGIP2 upregulation correlated well with the acquisition of competence to form green callus, and the CIM preincubation requirements for WUS upregulation matched those for shoot formation. Unlike ARR15, another cytokinin inducible, A-type ARR gene, ARR5, was upregulated on SIM, but the induction did not require CIM preincubation. These findings indicate that competencies for various events associated with shoot regeneration are acquired progressively during CIM preincubation, and that a set of genes, normally upregulated on SIM, are repressed by a process that can be relieved by CIM preincubation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APH:

Aphidicolin

ARR:

Arabidopsis response regulator

CIM:

Callus induction medium

DTA:

Diphtheria toxin chain A

FDR:

False discovery rate

GUS:

β-glucuronidase

HU:

Hydroxyurea

LRP:

Lateral root primordium

MUG:

4-Methylumbelliferyl β-glucuronide

NAA:

1-Naphthalene acetic acid

NPA:

N-1-naphthylphthalamic acid

PI:

Propidium iodide

RT-PCR:

Reverse transcriptase polymerase chain reaction

SIM:

Shoot induction medium

YFP:

Yellow fluorescent protein

References

  • Aloni R, Aloni E, Langhans M, Ullrich CI (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot (Lond) 97:883–893

    Article  CAS  Google Scholar 

  • Atta R, Guivarc H, Laurens L, Traas J, Giraudat-Pautot V, Chriqui D (2004) Totipotency of pericycle cells in Arabidopsis thaliana root and hypocotyl explants for both root and shoot regeneration. In: 15th international conference on Arabidopsis research. Berlin

  • Banno H, Ikeda Y, Niu QW, Chua NH (2001) Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration. Plant Cell 13:2609–2618

    Article  PubMed  CAS  Google Scholar 

  • Baurle I, Laux T (2005) Regulation of WUSCHEL transcription in the stem cell niche of the Arabidopsis shoot meristem. Plant Cell 17:2271–2280

    Article  PubMed  CAS  Google Scholar 

  • Beeckman T, Burssens S, Inze D (2001) The peri-cell-cycle in Arabidopsis. J Exp Bot 52:403–411

    PubMed  CAS  Google Scholar 

  • Bhalerao RP, Eklof J, Ljung K, Marchant A, Bennett M, Sandberg G (2002) Shoot-derived auxin is essential for early lateral root emergence in Arabidopsis seedlings. Plant J 29:325–332

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brenner WG, Romanov GA, Kollmer I, Burkle L, Schmulling T (2005) Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. Plant J 44:314–333

    Article  PubMed  CAS  Google Scholar 

  • Breuil-Broyer S, Morel P, de Almeida-Engler J, Coustham V, Negrutiu I, Trehin C (2004) High-resolution boundary analysis during Arabidopsis thaliana flower development. Plant J 38:182–192

    Article  PubMed  CAS  Google Scholar 

  • Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171

    Article  PubMed  CAS  Google Scholar 

  • Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

    Article  PubMed  CAS  Google Scholar 

  • Celenza JL Jr, Grisafi PL, Fink GR (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 9:2131–2142

    Article  PubMed  CAS  Google Scholar 

  • Che P, Gingerich DJ, Lall S, Howell SH (2002) Global and cytokinin-related gene expression changes during shoot development in Arabidopsis. Plant Cell 14:2771–2785

    Article  PubMed  CAS  Google Scholar 

  • Che P, Lall S, Nettleton D, Howell SH (2006) Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol 141:620–637

    Article  PubMed  CAS  Google Scholar 

  • Christianson ML, Warnick DA (1983) Competence and determination in the process of in vitro shoot organogenesis. Dev Biol 95:288–293

    Article  PubMed  CAS  Google Scholar 

  • Czako M, Jang JC, Herr JM Jr, Marton L (1992) Differential manifestation of seed mortality induced by seed-specific expression of the gene for diphtheria toxin A chain in Arabidopsis and tobacco. Mol Gen Genet 235:33–40

    Article  PubMed  CAS  Google Scholar 

  • Daimon Y, Takabe K, Tasaka M (2003) The CUP-SHAPED COTYLEDON genes promote adventitious shoot formation on calli. Plant Cell Physiol 44:113–21

    Article  PubMed  CAS  Google Scholar 

  • Gallois J, Woodward C, Reddy G, Sablowski R (2002) Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development 129:3207–3217

    PubMed  CAS  Google Scholar 

  • Gautheret RJ (1966) Factors Affecting differentiation of plant tissue grown in vitro. In: Beerman W, Nieuwkoop PD, Wolff E (eds) Cell differentiation and morphogenesis. North-Holland, Amsterdam, pp 55–95

    Google Scholar 

  • Hicks GS (1980) Patterns of organ development in plant tissue culture and the problem of organ determination. Bot Rev 46:1–23

    Google Scholar 

  • Hicks GS (1994) Shoot induction and organogenesis in vitro: a developmental perspective. In Vitro Cell Dev Biol 30P:10–15

    Google Scholar 

  • Himanen K, Boucheron E, Vanneste S, de Almeida Engler J, Inze D, Beeckman T (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14:2339–2351

    Article  PubMed  CAS  Google Scholar 

  • Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Kiba T, Yamada H, Mizuno T (2002) Characterization of the ARR15 and ARR16 response regulators with special reference to the cytokinin signaling pathway mediated by the AHK4 histidine kinase in roots of Arabidopsis thaliana. Plant Cell Physiol 43:1059–1066

    Article  PubMed  CAS  Google Scholar 

  • Kiba T, Yamada H, Sato S, Kato T, Tabata S, Yamashino T, Mizuno T (2003) The type-A response regulator, ARR15, acts as a negative regulator in the cytokinin-mediated signal transduction in Arabidopsis thaliana. Plant Cell Physiol 44:868–874

    Article  PubMed  CAS  Google Scholar 

  • Kuroha T, Satoh S (2007) Involvement of cytokinins in adventitious and lateral root formation. Plant Root 1:27–33

    Article  CAS  Google Scholar 

  • Kurup S, Runions J, Kohler U, Laplaze L, Hodge S, Haseloff J (2005) Marking cell lineages in living tissues. Plant J 42:444–453

    Article  PubMed  CAS  Google Scholar 

  • Laplaze L, Parizot B, Baker A, Ricaud L, Martiniere A, Auguy F, Franche C, Nussaume L, Bogusz D, Haseloff J (2005) GAL4-GFP enhancer trap lines for genetic manipulation of lateral root development in Arabidopsis thaliana. J Exp Bot 56:2433–2442

    Article  PubMed  CAS  Google Scholar 

  • Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM (1995) Formation of lateral root meristems is a two-stage process. Development 121:3303–3310

    PubMed  CAS  Google Scholar 

  • Laux T, Mayer KFX, Berger J, Jürgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96

    PubMed  CAS  Google Scholar 

  • Lee M, Phillips RL (1988) The chromosomal basis of somaclonal variation. Ann Rev Plant Physiol 39:413–437

    Article  Google Scholar 

  • Leibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175

    Article  PubMed  CAS  Google Scholar 

  • Li X, Mo X, Shou H, Wu P (2006) Cytokinin-mediated cell cycling arrest of pericycle founder cells in lateral root initiation of Arabidopsis. Plant Cell Physiol 47:1112–1123

    Article  PubMed  CAS  Google Scholar 

  • Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33–44

    PubMed  CAS  Google Scholar 

  • Mayer KF, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815

    Article  PubMed  CAS  Google Scholar 

  • Menges M, Hennig L, Gruissem W, Murray JA (2002) Cell cycle-regulated gene expression in Arabidopsis. J Biol Chem 277:41987–42002

    Article  PubMed  CAS  Google Scholar 

  • Planchais S, Glab N, Inze D, Bergounioux C (2000) Chemical inhibitors: a tool for plant cell cycle studies. FEBS Lett 476:78–83

    Article  PubMed  CAS  Google Scholar 

  • Sakai H, Honma T, Aoyama T, Sato S, Kato T, Tabata S, Oka A (2001) ARR1, a transcription factor for genes immediately responsive to cytokinins. Science 294:1519–1521

    Article  PubMed  CAS  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100:9440–9445

    Article  PubMed  CAS  Google Scholar 

  • Thorpe TA (1993) In vitro organogenesis and somatic embryogenesis: physiological and biochemical aspects. In: Roubelakis-Angelakis KA, Tran Thanh Van K (eds) Morphogenesis in plants- molecular approaches. Plenum, NewYork, pp 19–38

    Google Scholar 

  • To JP, Haberer G, Ferreira FJ, Deruere J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2004) Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16:658–671

    Article  PubMed  CAS  Google Scholar 

  • Torrey JG (1950) The induction of lateral roots by indoleacetic acid and root decapitation. Am J Bot 37:257–264

    Article  CAS  Google Scholar 

  • Valvekens D, Van Montagu M, Lijsebettens M (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85:5536–5540

    Article  PubMed  CAS  Google Scholar 

  • Weijers D, Van Hamburg JP, Van Rijn E, Hooykaas PJ, Offringa R (2003) Diphtheria toxin-mediated cell ablation reveals interregional communication during Arabidopsis seed development. Plant Physiol 133:1882–1892

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2350

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Motyka V, Strnad M, Schmulling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci USA 98:10487–104

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service (2003-35304-13363), by the National Science Foundation (IBN-0236060), and by the Plant Sciences Institute at Iowa State University. We acknowledge the important contributions of Rhonda DeCook for her help with the bioinformatics analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen H. Howell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Che, P., Lall, S. & Howell, S.H. Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta 226, 1183–1194 (2007). https://doi.org/10.1007/s00425-007-0565-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0565-4

Keywords

Navigation