Skip to main content
Log in

Chlamydomonas reinhardtii, a model system for functional validation of abiotic stress responsive genes

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Stress tolerance is a multigenic character and there are many stress responsive genes, which are stress specific. Although many of these have been cloned, their functional significance remains fragmentary. Hence it is important to identify the relevant stress genes involved in altering the metabolism for adaptation. Overexpression is one of the several approaches and Chlamydomonas is a suitable system to study the functional relevance of stress genes. Stress responses can only be assessed on prior exposure to sublethal induction stress. In this study the acclimation response of Chlamydomonas was assessed for different abiotic stresses using physiological screens like chlorophyll stability, membrane damage, cell viability, accumulation of free radicals, survival and recovery growth. We demonstrate that Chlamydomonas responds to diverse stresses and is a potential system to study the relevance of stress genes. The relevance of choline oxidase A (codA), a key enzyme in glycinebetaine biosynthesis, was examined by developing transformants expressing codA gene from Arthrobacter globiformis. Southern positive transformants showed enhanced accumulation of glycinebetaine. The transformants also showed enhanced growth under salinity, high light coupled with methylviologen-induced oxidative stress, high temperature and cold stress. However the transgenics were not tolerant to PEG-mediated simulated osmotic stress, LiCl, menadione and UV stress. Increased cell survival and decreased chlorophyll degradation in transformants under acclimated conditions further confirmed the relevance of codA in imparting stress tolerance. Our results indicated that the relevance of stress responsive genes can be efficiently validated for diverse abiotic stresses using Chlamydomonas system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APX:

Ascorbate peroxidase

codA:

Choline oxidase A

HSP:

Heat shock protein

LEA:

Late embryogenesis abundant

MDA:

Malondialdehyde

ROS:

Reactive oxygen species

SSC:

Saline sodium citrate

TAP:

Tris–acetate–phosphate

SOD:

Superoxide dismutase

References

  • Alia, Kondo Y, Sakamoto A, Nonaka H, Hayashi H, Saradhi PP, Chen THH, Murata N (1999) Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase. Plant Mol Biol 40:279–288

    Article  PubMed  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Chen WP, Li PH, Chen THH (2000) Glycinebetaine increases chilling tolerance and reduces chilling-induced lipid peroxidation in Zea mays L. Plant Cell Environ 23:609–618

    Article  CAS  Google Scholar 

  • Deshnium P, Los DA, Hayashi H, Mustardy L, Murata N (1995) Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress. Plant Mol Biol 29:897–907

    Article  PubMed  CAS  Google Scholar 

  • Deshnium P, Gombos Z, Nishiyama Y, Murata N (1997) The action in vivo of glycinebetaine in enhancement of tolerance of Synechococcus sp. Strain PCC 7942 to low temperature. J Bacteriol 179:339–344

    PubMed  CAS  Google Scholar 

  • Fuhrmann M, Oertel W, Hegemann P (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J 19:353–361

    Article  PubMed  CAS  Google Scholar 

  • Goho S, Bell G (2000) Mild environmental stress elicits mutations affecting fitness in Chlamydomonas. Proc R Soc Lond 267:123–129

    Article  CAS  Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quarternary ammonium compounds. Plant Soil 70:303–307

    Article  CAS  Google Scholar 

  • Grossman AR (2005) Paths toward algal genomics. Plant Physiol 137:410–427

    Article  PubMed  CAS  Google Scholar 

  • Gutman BL, Niyogi KK (2004) Chlamydomonas and Arabidopsis. A dynamic duo. Plant Physiol 135:607–610

    Article  PubMed  CAS  Google Scholar 

  • Harris EH (1989) Chlamydomonas source book. Academic, San Diego

    Google Scholar 

  • Harris EH (2001) Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol 52:363–406

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Alia, Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12:133–142

    Article  PubMed  CAS  Google Scholar 

  • Kindle KL (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87:1228–1232

    Article  PubMed  CAS  Google Scholar 

  • Kindle KL, Schnell RA, Fernandez E, Lefebvre PA (1989) Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol 109:2589–2601

    Article  PubMed  CAS  Google Scholar 

  • Kumar SV, Misquitta RW, Reddy VS, Rao BJ, Rajam MV (2004) Genetic transformation of the green alga-Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166:731–738

    Article  CAS  Google Scholar 

  • Kumar SV, Basu B, Rajam MV (2005) Modulation of polyamine levels influence growth and cell division in Chlamydomonas reinhardtii. Physiol Mol Biol Plant 11:1–6

    Google Scholar 

  • Lilly JW, Maul JE, Stern DB (2002) The Chlamydomonas reinhardtii organellar genomes respond transcriptionally and post-transcriptionally to abiotic stimuli. Plant Cell 14:2681–2706

    Article  PubMed  CAS  Google Scholar 

  • Lin YJ, Zhang Q (2005) Optimizing the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep 23:540–547

    Article  PubMed  CAS  Google Scholar 

  • Maul JE, Lilly JW, Cui L, dePamphilis CW, Harris EH, Stern DB (2002) The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. Plant Cell 14:2659–2679

    Article  PubMed  CAS  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Mulley D, Ghoshal D, Goyal A (2001) UV-A inhibition of alternative respiration in pea leaves and a unicellular green alga Chlamydomonas reinhardtii. J Plant Biochem Biotechnol 10:143–146

    Google Scholar 

  • Nomura M, Ishitani M, Takabe T, Rai AK, Takabe T (1995) Synechococcus sp. PCC7942 transformed with Escherichia coli bet genes produces glycinebetaine from choline and acquires resistance to salt stress. Plant Physiol 107:703–708

    PubMed  CAS  Google Scholar 

  • Ohnishi N, Murata N (2006) Glycinebetaine counteracts the inhibitory effects of salt stress on the degradation and synthesis of D1 protein during photoinhibition in Synechococcus sp. PCC7942. Plant Physiol 141:752–765

    Article  CAS  Google Scholar 

  • Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycinebetaine on the structure and function in the oxygen-evolving photosystem II complex. Photosynth Res 44:243–252

    Article  CAS  Google Scholar 

  • Park EJ, Zeknic Z, Chen THH (2006) Exogenous application of glycinebetaine increases chilling tolerance in tomato plants. Plant Cell Physiol 47:706–714

    Article  PubMed  CAS  Google Scholar 

  • Pazour GJ, Witman GB (2000) Forward and reverse genetic analysis of microtubule motors in Chlamydomonas. Methods 22:285–298

    Article  PubMed  CAS  Google Scholar 

  • Prandl R, Hofer KH, Schumacher GE, Schöffl F (1998) HSF3, a new heat shock factor from Arabidopsis thaliana derepress the heat shock response and confers thermotolerance when over-expressed in transgenic plants. Mol Gen Genet 258:269–278

    Article  PubMed  CAS  Google Scholar 

  • Prieto R, Pardo JM, Niu X, Bressan RA, Hasegawa PM (1996) Salt-sensitive mutants of Chlamydomonas reinhardtii isolated after insertional tagging. Plant Physiol 112:99–104

    PubMed  CAS  Google Scholar 

  • Reichheld JP, Vernoux T, Lardon F, Montagu MV (1999) Specific check points regulate plant cell cycle progression in response to oxidative stress. Plant J 17:647–656

    Article  CAS  Google Scholar 

  • Rizhsky L, Liang H, Mittler R (2003) The water–water cycle is essential for chloroplast protection in the absence of stress. J Biol Chem 278:38921–38925

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto A, Murata N (2001) The use of bacterial choline oxidase, a glycinebetaine synthesizing enzyme, to create stress-resistant transgenic plants. Plant Physiol 125:180–188

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Scharf DW, Jeong BR, Zhang C, Cerutti H (2000) Transgene and transposon silencing in Chlamydomonas reinhardtii by a DEAH-box RNA helicase. Science 290:1159–1162

    Article  Google Scholar 

  • Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (super oxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin and abscisic acid. Plant Physiol 125:1591–1602

    Article  PubMed  CAS  Google Scholar 

  • Schroda M, Beck CF, Vallon O (2002) Sequence elements within an HSP70 promoter counteract transcriptional transgene silencing in Chlamydomonas. Plant J 31:445–455

    Article  PubMed  CAS  Google Scholar 

  • Senthil-Kumar M, Udayakumar M (2004) Development of thermotolerant tomato (Lycopersicon esculentum Mill.) lines: an approach based on mutagenesis. J Plant Biol (India) 31:139–148

    Google Scholar 

  • Senthil-Kumar M, Udayakumar M (2006) High throughput virus-induced gene silencing approach to assess the functional relevance of a moisture stress-induced cDNA homologous to lea4. J Exp Bot 57:2291–2302

    Article  PubMed  CAS  Google Scholar 

  • Senthil-Kumar M, Srikanthbabu V, Mohanraju B, Kumar G, Shivaprakash N, Udayakumar M (2003) Screening of inbred lines to develop a thermotolerant sunflower hybrid using the temperature induction response (TIR) technique: a novel approach by exploiting residual variability. J Exp Bot 54:2569–2578

    Article  PubMed  CAS  Google Scholar 

  • Senthil-Kumar M, Kumar G, Srikanthbabu V, Udayakumar (2007) Assessment of variability in acquired thermotolerance: Potential option to study genotypic response and the relevance of stress genes. J Plant Physiol 164:111–125

    Article  PubMed  CAS  Google Scholar 

  • Shi MM, Kugelman A, Iwamoto T, Tian L, Forman HJ (1994) Quinone-induced oxidative stress elevates glutathione and induces γ-glutamylcysteine synthetase activity in rat lung epithelial L2 cells. J Biol Chem 269:26512–26517

    PubMed  CAS  Google Scholar 

  • Shimogawara K, Fujiwara S, Grossman A, Usuda H (1998) High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148:1821–1828

    PubMed  CAS  Google Scholar 

  • Shrager J, Hauser C, Chang CW, Harris EH, Davies J, McDermott J, Tamse R, Zhang Z, Grossman AR (2003) Chlamydomonas reinhardtii genome project. A guide to the generation and use of the cDNA information. Plant Physiol 131:401–408

    Article  PubMed  Google Scholar 

  • Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847

    Article  PubMed  CAS  Google Scholar 

  • Siritunga D, Sayre RT (2003) Generation of cyanogens-free transgenic cassava. Planta 217:367–373

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Nishiyama Y, Murata N (2000) Acclimation of the photosynthetic machinery to high temperature in Chlamydomonas reinhardtii requires synthesis de novo of proteins encoded by the nuclear and chloroplast genomes. Plant Physiol 124:441–449

    Article  PubMed  CAS  Google Scholar 

  • Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotech 16:123–132

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14

    Article  PubMed  CAS  Google Scholar 

  • Wong CE, Li Y, Whitty BR, Camino CD, Akhter SR, Brandle JE, Golding GB, Weretilnyk EA, Moffatt BA, Griffith M (2005) Expressed sequence tags from the Yukon ecotype of Thellungiella reveal that gene expression in response to cold, drought and salinity shows little overlap. Plant Mol Biol 58:561–574

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Liang Z, Lu C (2005) Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. Plant Physiol 138:2299–2309

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura K, Miyao K, Gaber A, Takeda T, Kanaboshi H, Miyasaka H, Shigeoka S (2004) Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant J 37:21–33

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Hema acknowledges the financial assistance from Department of Crop Physiology towards her Ph.D. programme. Senthil-Kumar thanks the Council of Scientific and Industrial Research, New Delhi, for the Senior Research Fellowship award (No. 9/271(86)/2004/EMR-1) for his Ph.D. programme and also American Society for Plant Biologists for award to ‘Plant Biology 2005’. Dr. B. J. Rao BARC Bombay, Dr. M. V. Rajam, South Campus (DU), New Delhi, and Dr. E. H. Harris, Duke University, Durham, NC, USA are acknowledged for the Chlamydomonas strains. The authors are thankful to Dr. Shivaprakash, MRC Bangalore, Dr. Gopalakrishna, Invitrogen Bangalore and Dr. Lalitha Anand, IIHR Bangalore, for the useful discussion during manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Udayakumar.

Additional information

R. Hema and M. Senthil-Kumar contributed equally.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hema, R., Senthil-Kumar, M., Shivakumar, S. et al. Chlamydomonas reinhardtii, a model system for functional validation of abiotic stress responsive genes. Planta 226, 655–670 (2007). https://doi.org/10.1007/s00425-007-0514-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0514-2

Keywords

Navigation