Skip to main content
Log in

A phytochrome-dependent embryonic factor modulates gibberellin responses in the embryo and micropylar endosperm of Datura ferox seeds

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The promotion of germination by phytochrome is associated with extensive changes both in the embryo and in the micropylar region of the endosperm (ME) of Datura ferox seeds. These changes require de novo gibberellins (GAs) biosynthesis in the embryo, the site where the light stimulus is perceived. GAs stimulate embryo growth potential and move to ME, promoting the expression of genes related with weakening. We report here that, in addition, phytochrome stimulates the sensitivity of the seeds to gibberellic acid (GA). The phytochrome-induced signal is produced in the embryo and enhances the stimulus by GA of embryo growth potential (EGP) and the promotion of the expression of proteins thought to participate in ME weakening: endo-β-mannanase (EC 3.2.1.78), endo-β-mannosidase (EC 3.2.1.25) and expansin. Our results suggest that the cytokinins may be a component of the embryonic signal. Phytochrome also modulates DfPHOR and DfMYB transcript levels in ME. These genes show a high identity with components of GAs signaling identified in other species. Expression of DfPHOR in the ME is apparently regulated by phytochrome through the supply of GAs from the embryo to ME, whereas DfMYB expression is regulated by an embryonic factor with some of the characteristics of the one that modulates seed sensitivity to GAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EGP:

Embryo growth potential

FR:

Far-red

GA:

Gibberellic acid

GAs:

Gibberellins

ME:

Micropylar region of the endosperm

R:

Red

ZEA:

Zeatin

References

  • Amador V, Monte E, García-Martínez J, Prat S (2001) Gibberellin signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to Drosophila armadillo. Cell 106:343–354

    Article  PubMed  CAS  Google Scholar 

  • Bassel G, Zielinska E, Mullen R, Bewley D (2004) Down-regulation of DELLA genes is not essential for germination of tomato, soybean, and Arabidopsis seeds. Plant Physiol 136:2782–2789

    Article  PubMed  CAS  Google Scholar 

  • Benech-Arnold R, Sánchez R, Forcella F, Kruk B, Ghersa C (2000) Environmental control of dormancy in weed seed banks in soil. Field Crops Res 65:105–122

    Article  Google Scholar 

  • Bewley D (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  PubMed  CAS  Google Scholar 

  • Bewley D, Black M (1994) Seeds: Physiology of Development and Germination, Ed 2. Plenum, New York

    Google Scholar 

  • Burgin M, Perez Flores L, Mella R, Staneloni R, Sánchez R (2000) The transcription of -mannanase and GA 3 -hydroxylase genes of Datura ferox seeds is regulated by phytochrome. In: Plant Physiology, San Diego, p 124:S146

  • Carpita N, Nabors M, Ross C, Petretic N (1979a) The growth physics and water relations of red-light-induced germination in lettuce seeds. Planta (Berl) 144:217–224

    Google Scholar 

  • Carpita N, Ross C, Nabors M (1979b) The influence of plant growth regulators on the growth of the embryonic axes of red and far-red treated lettuce seeds. Planta (Berl) 145:511–516

    CAS  Google Scholar 

  • Casal J, Sánchez R (1998) Phytochromes and seed germination. Seed Sci Res 8:317–329

    CAS  Google Scholar 

  • Chen F, Bradfrod K (2000) Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiol 124:1265–1274

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Dahal P, Bradford K (2001) Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination. Plant Physiol 127:928–936

    Article  PubMed  CAS  Google Scholar 

  • Dahal P, Nevins D, Bradford K (1997) Relationship of endo-β-mannananse activity and cell wall hydrolysis in tomato endosperm to germination rates. Plant Physiol 113:1243–1252

    PubMed  CAS  Google Scholar 

  • de Miguel L, Arana M, Burgin M, Sánchez R (2002) The response of ME cells to gibberellin stimulus of ß-mannanase activity and expansin gene expression is increased by a factor produced by the embryo in Datura ferox seeds. The International Society for Seed Science (ISSS), Salamanca, p 26

  • de Miguel L, Sánchez R (1992) Phytochrome-induced germination, endosperm softening and embryo growth potential in Datura ferox seeds: sensitivity to low water potential and time to escape to FR reversal. J Exp Bot 43:969–974

    Article  Google Scholar 

  • Debeaujon I, Koornneef M (2000) Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol 122:415–424

    Article  PubMed  CAS  Google Scholar 

  • Gocal G, Poole A, Gubler F, Watts R, Blundell C, King R (1999) Long-day up regulation of a GAMYB gene during Lolium temulentum inflorescence formation. Plant Physiol 119:1271–1278

    Article  PubMed  CAS  Google Scholar 

  • Gocal G, Sheldon CC, Gubler F, Moritz T, Bagnall DJ, MacMillan CP, Li SF, Parish RW, Dennis ES, Weigel D, King RW (2001) GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiol 127:1682–1693

    Article  PubMed  CAS  Google Scholar 

  • Greenboim-Wainberg Y, Maymon I, Borochov R, Alvarez J, Olszewski N, Ori N, Eshed Y, Weiss D (2005) Cross talk between gibberellin and cytokinin: the Arabidopsis GA response inhibitor SPYNDLY plays a positive role in cytokinin signaling. Plant Cell 17:92–102

    Article  PubMed  CAS  Google Scholar 

  • Groot S, Karssen C (1987) Gibberellins regulate seed germination in tomato by endosperm weakening: a study with gibberellin-defficient mutants. Planta (Berl) 171:525–531

    Article  CAS  Google Scholar 

  • Gubler F, Chandler P, White R, Llewellyn D, Jacobsen J (2002) Gibberellin signaling in barley aleurone cells. Control of SLN1 and GAMYB expression. Plant Physiol 129:191–200

    Article  PubMed  CAS  Google Scholar 

  • Gubler F, Kalla R, Roberts J, Jacobsen J (1995) Gibberellin-regulated expression of a MYB gene in barley aleurone cells: evidence for MYB transactivation of a high-pl α-amylase gene promoter. Plant Cell 7:1879–1891

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen S, Binkowski K, Olszewski N (1996) SPINDLY, a tetratricopeptide repeat protein involved in gibberellin signal transduction in Arabidopsis. Proc Natl Acad Sci USA 93:9292–9296

    Article  PubMed  CAS  Google Scholar 

  • Kamiya Y, García-Martínez J (1999) Regulation of gibberellin biosynthesis by light. Curr Opin Plant Biol 2:398–403

    Article  PubMed  CAS  Google Scholar 

  • Khan A, Goss J, Smith D (1957) Effect of gibberellin on germination of lettuce seeds. Science 125:645–646

    Article  Google Scholar 

  • Kranz H, Denekamp M, Greco R, Jin H, Leyva A, Meissner RC, Petroni K, Urzainqui A, Bevan M, Martin C, Smeekens S, Tonelli C, Paz-Ares J, Weisshaar B (1998) Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. Plant J 16:263–276

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Cheng H, King K, Wang W, He Y, Hussain A, Lo J, Harberd N, Peng J (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Gene Dev 16:646–658

    Article  PubMed  CAS  Google Scholar 

  • Mella R, Burgin M, Sánchez R (2004) Expansin gene expression in Datura ferox L. seeds is regulated by the low-fluence response, but not by the high irradiance response, of phytochromes. Seed Sci Res 14:61–71

    Article  CAS  Google Scholar 

  • Mella R, Burgin M, Staneloni R, Sánchez R (2000) Expansins gene expression is regulated by phytochrome during dormancy breakage in Datura ferox L. seeds. Plant Physiol, San Diego, USA, p 124: S152

    Google Scholar 

  • Mella R, Maldonado S, Sánchez R (1994) Phytochrome-induced structural changes and protein degradation prior to radicle protrusion in Datura ferox seeds. Can J Bot 73:1371–1378

    Google Scholar 

  • Miller C (1956) Similarity of some kinetin and red light effects. Plant Physiol 31:318–319

    PubMed  CAS  Google Scholar 

  • Mo B, Bewley D (2003) The relationship between β-mannosidase and endo-β-mannanase activities in tomato seeds during and following germination: a comparison of seed populations and individual seeds. J Exp Bot 54:2503–2510

    Article  PubMed  CAS  Google Scholar 

  • Murray F, Kalla R, Jacobsen J, Gulber F (2003) A role for HvGAMYB in anther development. Plant J 33:481–491

    Article  PubMed  CAS  Google Scholar 

  • Nonogaki H, Gee O, Bradford K (2000) A germination specific endo-β-mannanase gene is expressed in the micropylar endosperm cap of tomato seeds. Plant Physiol 123:1235–1245

    Article  PubMed  CAS  Google Scholar 

  • Peng J, Richards D, Moritz T, Caño-Delgado A, Harberd N (1999) Extragenic suppressors of the Arabidopsis gai mutation alter the dose-response relationship of diverse gibberellin responses. Plant Physiol 119:1199–1207

    Article  PubMed  CAS  Google Scholar 

  • Psaras G, Georghiou K, Mitrakos K (1981) Red-light induced endosperm preparation for radicle protrusion of lettuce embryos. Bot Gaz 142:13–18

    Article  Google Scholar 

  • Qamaruddin M, Tillberg E (1989) Rapid effects of red light on the isopentenyladenosine content in Scots Pine seeds. Plant Physiol 91:5–8

    PubMed  CAS  Google Scholar 

  • Ritchie S, McCubbin A, Ambrose G, Kao T, Gilroy S (1999) The sensitivity of barley aleurone tissue to gibbeellin is heterogeneous and may be spatially determined. Plant Physiol 120:361–370

    Article  PubMed  CAS  Google Scholar 

  • Sánchez R, de Miguel L (1985) The effect of red light, ABA, and K+ on the growth of Datura ferox embryos and their relations with photocontrol of germination. Bot Gaz 146:472–476

    Article  Google Scholar 

  • Sánchez R, de Miguel L (1992) Phytochrome-induced germination, endosperm softening and embryo growth potential in Datura ferox seeds: sensitivity to low water potential and time to escape to FR reversal. J Exp Bot 43:969–974

    Article  Google Scholar 

  • Sánchez R, de Miguel L (1997) Phytochrome promotion of mannan-degrading enzyme activities in the micropylar endosperm of Datura ferox seeds requieres the presence of the embryo and gibberellin synthesis. Seed Sci Res 7:27–33

    Google Scholar 

  • Sánchez R, Sunell L, Labavitch J, Bonner B (1990) Changes in endosperm cell walls of two Datura species before radicle protrusion. Plant Physiol 93:89–97

    Article  PubMed  Google Scholar 

  • Soriano A, Sánchez R, Eilberg B (1964) Factors and processes in the germination of Datura ferox L. Can J Bot 42:1189–1203

    Article  Google Scholar 

  • Thomas T, Palevich D, Biddington N, Austin R (1975) Growth regulators and the phytochrome-mediated dormancy of celery seeds. Physiol Plantarum 35:101–106

    Article  CAS  Google Scholar 

  • Toyomasu T, Kawaide H, Mitsuhayi W, Inoue Y, Kamiya Y (1998) Phytochrome regulates gibberellin biosynthesis during germination of photoblastic lettuce seeds. Plant Physiol 118:1517–1523

    Article  PubMed  CAS  Google Scholar 

  • Toyomasu T, Tsuji H, Yamane H, Nakayama M, Yamaguchi I, Murofushi N, Takahashi N, Inoue Y (1993) Light effects on endogenous levels of gibberellins in photoblastic lettuce seeds. J Plant Growth Regul 12:85–90

    Article  CAS  Google Scholar 

  • Wen C, Chang C (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14:87–100

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Smith M, Brown R, Kamiya Y, Sun T (1998) Phytochrome regulation and differential expression of gibberellin 3β-hydroxylase genes in germinating Arabidopsis seeds. Plant Cell 10:2115–2126

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Nagatani A, Zhao Y, Kang B, Kendrick R, Kamiya Y (1995) Effects of gibberellins on seed germination of phytochrome-deficient mutants of Arabidopsis thaliana. Plant Cell Physiol 36:1205–1211

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Roberto Benech-Arnold for the critical reading of the manuscript and Ms. Gabriela Auge for her most valuable technical help. We also appreciate the hospitality of the Fundación Leloir for allowing us the use of laboratory facilities and thank Dr Roberto Staneloni for his valuable advice and support. This work was supported by the Agencia Nacional de Promoción Científica y Tecnológica (grant no. 09586 to R.A.S.) and the University of Buenos Aires (grant no. G073 and G6091 to R.A.S.). M.V.A. was supported by a fellowship from the University of Buenos Aires.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Augusto Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arana, M.V., de Miguel, L.C. & Sánchez, R.A. A phytochrome-dependent embryonic factor modulates gibberellin responses in the embryo and micropylar endosperm of Datura ferox seeds. Planta 223, 847–857 (2006). https://doi.org/10.1007/s00425-005-0134-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0134-7

Keywords

Navigation