Skip to main content
Log in

Putrescine N-methyltransferase in Solanum tuberosum L., a calystegine-forming plant

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Putrescine N-methyltransferase (PMT, EC 2.1.1.53) catalyses the first specific step in the biosynthesis of tropane and nicotine alkaloids. Potato (Solanum tuberosum L.) contains neither nicotine nor the medicinal tropane alkaloids hyoscyamine or scopolamine, but calystegines. They are nortropane alkaloids with glycosidase inhibitory activity. Based on the assumption of calystegine formation by the tropane alkaloid pathway, PMT genes and enzymes were investigated in potato. Sprouting tubers contained both N-methylputrescine and PMT activity. Two cDNA clones coding for PMTs were obtained together with a cDNA clone for spermidine synthase (SPDS, EC 2.5.1.16). The pmt sequences resemble those from Nicotiana tabacum (85% identity) and those from tropane alkaloid plants, Atropa belladonna (80% identity) and Hyoscyamus niger (79% identity). They are less similar to SPDS of S. tuberosum (66% identity). Expression of pmt1 and spds cDNA in Escherichia coli yielded active enzymes, while pmt2 expression resulted in insoluble protein. Chimera proteins obtained by fusion of fragments of S. tuberosum pmt2 and H. niger pmt were active as PMT, if the initial part of pmt2 was used, indicating that a mutation in the terminal part of the gene caused insolubility of the enzyme. PMT1 was purified after expression in E. coli and proved to be an active N-methyltransferase without SPDS activity. The enzyme was specific for putrescine (K M 250 μM) and inhibited by n-butylamine and cadaverine. While spds was transcribed in all plant organs, pmt transcripts were found in small tuber sprouts only. The results confirm that in potato genes and enzymes specific for the tropane alkaloid metabolism are expressed and active.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

dcSAM:

Decarboxylated S-adenosyl-l-methionine

IPTG:

Isopropyl β-d-1-thiogalactoside

PMT:

Putrescine N-methyltransferase (enzyme)

pmt :

Putrescine N-methyltransferase (cDNA)

SAM:

S-adenosyl-l-methionine

SPDS:

Spermidine synthase (enzyme)

spds :

Spermidine synthase (cDNA)

References

  • Alabadi D, Carbonell J (1999) Differential expression of two spermidine synthase genes during early fruit development and in vegetative tissues of pea. Plant Mol Biol 39:933–943

    Article  PubMed  CAS  Google Scholar 

  • Asano N, Kato A, Kizu H, Matsui K (1996) 1-Beta-amino-2-alpha,3-beta,5-beta-trihydroxycycloheptane from Physalis alkekengi var. francheti. Phytochemistry 42:719–721

    Article  CAS  Google Scholar 

  • Asano N, Kato A, Miyauchi M, Kizu H, Tomimori T, Matsui K, Nash RJ, Molyneux RJ (1997) Specific alpha-galactosidase inhibitors, N-methylcalystegines—structure/activity relationships of calystegines from Lycium chinense. Eur J Biochem 248:296–303

    Article  PubMed  CAS  Google Scholar 

  • Asano N, Nash RJ, Molyneux RJ, Fleet GW (2000) Sugar-mimic glycosidase inhibitors: natural occurrence, biological activity and prospects for therapeutic application. Tetrahedron Asymmetry 11:1645–1680

    Article  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brandstädter J, Rossbach C, Theres K (1993) The pattern of histone H4 expression in the tomato shoot apex changes during development. Planta 192:69–74

    Article  Google Scholar 

  • Choi KB, Morishige T, Shitan N, Yazaki K, Sato F (2002) Molecular cloning and characterization of coclaurine N-methyltransferase from cultured cells of Coptis japonica. J Biol Chem 277:830–835

    Article  PubMed  CAS  Google Scholar 

  • Dawson RF (1941) The localization of the nicotine synthetic mechanism in the tobacco plant. Science 94:396–397

    Article  PubMed  CAS  Google Scholar 

  • Dobrowolski B, Glund K, Metzlaff M (1989) Cloning of tomato nuclear ribosomal DNA. Ribosomal DNA organization in leaves and suspension-cultured cells. Plant Sci 60:206–210

    Article  Google Scholar 

  • Dräger B (2004) Chemistry and biology of calystegines. Nat Prod Rep 21:211–223

    Article  PubMed  CAS  Google Scholar 

  • Feth F, Arfmann HA, Wray V, Wagner KG (1985) Determination of putrescine N-methyltransferase by high performance liquid chromatography. Phytochemistry 24:921–923

    Article  CAS  Google Scholar 

  • Flores HE, Galston AW (1981) Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol 69:701–706

    Google Scholar 

  • Goldmann A, Milat ML, Ducrot PH, Lallemand JY, Maille M, Lepingle A, Charpin I, Tepfer D (1990) Tropane derivatives from Calystegia sepium. Phytochemistry 29:2125–2128

    Article  CAS  Google Scholar 

  • Griffin WJ, Lin GD (2000) Chemotaxonomy and geographical distribution of tropane alkaloids. Phytochemistry 53:623–637

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto T, Yukimune Y, Yamada Y (1989) Putrescine and putrescine N-methyltransferase in the biosynthesis of tropane alkaloids in cultured roots of Hyoscyamus albus. I. Biochemical studies. Planta 178:123–130

    Article  CAS  Google Scholar 

  • Hashimoto T, Tamaki K, Suzuki K, Yamada Y (1998a) Molecular cloning of plant spermidine synthases. Plant Cell Physiol 39:73–79

    PubMed  CAS  Google Scholar 

  • Hashimoto T, Shoji T, Mihara T, Oguri H, Tamaki K, Suzuki KI, Yamada Y (1998b) Intraspecific variability of the tandem repeats in Nicotiana putrescine N-methyltransferases. Plant Mol Biol 37:25–37

    Article  PubMed  CAS  Google Scholar 

  • Hibi N, Fujita T, Hatano M, Hashimoto T, Yamada Y (1992) Putrescine N-methyltransferase in cultured roots of Hyoscyamus albus: n-Butylamine as a potent inhibitor of the transferase both in vitro and in vivo. Plant Physiol 100:826–835

    PubMed  CAS  Google Scholar 

  • Hibi N, Higashiguchi S, Hashimoto T, Yamada Y (1994) Gene expression in tobacco low-nicotine mutants. Plant Cell 6:723–735

    Article  PubMed  CAS  Google Scholar 

  • Hills KL, Trautner EM, Rodwell CN (1946) A tobacco–Duboisia graft. Aust J Sci 9:24–25

    CAS  Google Scholar 

  • Imanishi S, Hashizume K, Nakakita M, Kojima H, Matsubayashi Y, Hashimoto T, Sakagami Y, Yamada Y, Nakamura K (1998) Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in nicotine biosynthesis in tobacco cell cultures. Plant Mol Biol 38:1101–1111

    Article  PubMed  CAS  Google Scholar 

  • Kaur-Sawhney R, Liu-Mei Shih, Galston AW (1982) Relation of polyamine biosynthesis to the initiation of sprouting in potato tubers. Plant Physiol 69:411–415

    Article  PubMed  CAS  Google Scholar 

  • Keiner R, Dräger B (2000) Calystegine distribution in potato (Solanum tuberosum) tubers and plants. Plant Sci 150:171–179

    Article  CAS  Google Scholar 

  • Keiner R, Kaiser H, Nakajima K, Hashimoto T, Dräger B (2002) Molecular cloning, expression and characterization of tropinone reductase II, an enzyme of the SDR family in Solanum tuberosum (L). Plant Mol Biol 48:299–308

    Article  PubMed  CAS  Google Scholar 

  • Korolev S, Ikeguchi Y, Skarina T, Beasley S, Arrowsmith C, Edwards A, Joachimiak A, Pegg AE, Savchenko A (2002) The crystal structure of spermidine synthase with a multisubstrate adduct inhibitor. Nat Struct Biol 9:27–31

    Article  PubMed  CAS  Google Scholar 

  • Marce M, Brown DS, Capell T, Figueras X, Tiburcio AF (1995) Rapid high-performance liquid chromatographic method for the quantitation of polyamines as their dansyl derivatives: application to plant and animal tissues. J Chromatogr B 666:329–335

    Article  CAS  Google Scholar 

  • Martin JL, McMillan FM (2002) SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol 12:783–793

    Article  PubMed  CAS  Google Scholar 

  • Mesnard F, Roscher A, Garlick AP, Girard S, Baguet E, Aroo RR, Lebreton J, Robins RJ, Ratcliffe RG (2002) Evidence for the involvement of tetrahydrofolate in the demethylation of nicotine by Nicotiana plumbaginifolia cell-suspension cultures. Planta 214:911–919

    Article  PubMed  CAS  Google Scholar 

  • Mizusaki S, Tanabe Y, Noguchi M, Tamaki E (1971) Phytochemical studies on tobacco alkaloids. XIV. Occurrence and properties of putrescine N-methyltransferase in tobacco roots. Plant Cell Physiol 12:633–640

    CAS  Google Scholar 

  • Molyneux RJ, Nash RJ, Asano N (1996) The chemistry and biology of calystegines and related nortropane alkaloids. In: Pelletier SW (ed) Alkaloids: chemical and biological perspectives. Wiley, New York, pp 303–343

    Chapter  Google Scholar 

  • Portsteffen A, Dräger B, Nahrstedt A (1994) The reduction of tropinone in Datura stramonium root cultures by two specific reductases. Phytochemistry 37:391–400

    Article  PubMed  CAS  Google Scholar 

  • Raman SB, Rathinasabapathi B (2003) β-Alanine N-methyltransferase of Limonium latifolium. cDNA cloning and functional expression of a novel N-methyltransferase implicated in the synthesis of the osmoprotectant β-alanine betaine. Plant Physiol 132:1642–1651

    Article  PubMed  CAS  Google Scholar 

  • Reinbothe C, Tewes A, Luckner M, Reinbothe S (1992) Differential gene expression during somatic embryogenesis in Digitalis lanata analyzed by in vivo and in vitro protein synthesis. Plant J 2:917–926

    Article  CAS  Google Scholar 

  • Riechers DE, Timko MP (1999) Structure and expression of the gene family encoding putrescine N-methyltransferase in Nicotiana tabacum: New clues to the evolutionary origin of cultivated tobacco. Plant Mol Biol 41:387–401

    Article  PubMed  CAS  Google Scholar 

  • Rothe G, Hachiya A, Yamada Y, Hashimoto T, Dräger B (2003) Alkaloids in plants and root cultures of Atropa belladonna overexpressing putrescine N-methyltransferase. J Exp Bot 54:2065–2070

    Article  PubMed  CAS  Google Scholar 

  • Sachan N, Falcone DL (2002) Wound-induced gene expression of putrescine N-methyltransferase in leaves of Nicotiana tabacum. Phytochemistry 61:797–805

    Article  PubMed  CAS  Google Scholar 

  • Sambrock J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor New York

    Google Scholar 

  • Schluckebier G, O’Gara M, Saenger W, Cheng X (1995) Universal catalytic domain structure of AdoMet-dependent methyltransferases. J Mol Biol 247:16–20

    Article  PubMed  CAS  Google Scholar 

  • Scholl Y, Höke D, Dräger B (2001) Calystegines in Calystegia sepium derive from the tropane alkaloid pathway. Phytochemistry 58:883–889

    Article  PubMed  CAS  Google Scholar 

  • Scholl Y, Schneider B, Dräger B (2003) Biosynthesis of calystegines: 15 N NMR and kinetics of formation in root cultures of Calystegia sepium. Phytochemistry 62:325–332

    Article  PubMed  CAS  Google Scholar 

  • Shoji T, Yamada Y, Hashimoto T (2000) Jasmonate induction of putrescine N-methyltransferase genes in the root of Nicotiana sylvestris. Plant Cell Physiol 41:831–839

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Davies PJ (1985) Separation and quantitation of polyamines in plant tissue by high performance liquid chromatography of their dansyl derivatives. Plant Physiol 78:89–91

    PubMed  CAS  Google Scholar 

  • Suzuki K, Yamada Y, Hashimoto T (1999) Expression of Atropa belladonna putrescine N-methyltransferase gene in root pericycle. Plant Cell Physiol 40:289–297

    PubMed  CAS  Google Scholar 

  • Taylor MA, Burch LR, Davies HV (1993) Changes in polyamine biosynthesis during the initial stages of tuberisation in potato (Solanum tuberosum L.). J Plant Physiol 141:370–372

    CAS  Google Scholar 

  • Uefuji H, Ogita S, Yamaguchi Y, Koizumi N, Sano H (2003) Molecular cloning and functional characterization of three distinct N-methyltransferases involved in the caffeine biosynthetic pathway in coffee plants. Plant Physiol 132:372–380

    Article  PubMed  CAS  Google Scholar 

  • Walton NJ, Peerless A-CJ, Robins RJ, Rhodes M-JC, Boswell HD, Robins DJ (1994) Purification and properties of putrescine N-methyltransferase from transformed roots of Datura stramonium L. Planta 193:9–15

    Article  CAS  Google Scholar 

  • Xie QW, Tabor CW, Tabor H (1993) Deletion mutations in the speED operon: spermidine is not essential for the growth of Escherichia coli. Gene 126:115–117

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Takashi Hashimoto, NAIST, Japan, for providing samples of N-methylputrescine, dcSAM, and the E. coli strain HT551. HPLC analysis was performed by Anja Wodak in our laboratory; her excellent assistance is highly appreciated. The financial support by the German Research Foundation (Deutsche Forschungsgemeinschaft) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Dräger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stenzel, O., Teuber, M. & Dräger, B. Putrescine N-methyltransferase in Solanum tuberosum L., a calystegine-forming plant. Planta 223, 200–212 (2006). https://doi.org/10.1007/s00425-005-0077-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0077-z

Keywords

Navigation