Skip to main content
Log in

Cytokinin-induced hypocotyl elongation in light-grown Arabidopsis plants with inhibited ethylene action or indole-3-acetic acid transport

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Cytokinins inhibit hypocotyl elongation in darkness but have no obvious effect on hypocotyl length in the light. However, we found that cytokinins do promote hypocotyl elongation in the light when ethylene action is blocked. A 50% increase in Arabidopsis thaliana (L.) Heynh. hypocotyl length was observed in response to N6-benzyladenine (BA) treatment in the presence of Ag+. The level of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid was strongly increased, indicating that ethylene biosynthesis was up-regulated by treatment with cytokinin. Furthermore, the effects of cytokinins on hypocotyl elongation were also tested using a series of mutants in the cascade of the ethylene-signal pathway. In the ethylene-insensitive mutants etr1-3 and ein2-1, cytokinin treatment resulted in hypocotyl lengths comparable to those of wild-type seedlings treated with both Ag+ and BA. A similar phenotypical response to cytokinin was observed when auxin transport was blocked by α-naphthylphthalamic acid (NPA). Applied cytokinin largely restored cell elongation in the basal and middle parts of the hypocotyls of NPA-treated seedlings and at the same time abolished the NPA-induced decrease in indole-3-acetic acid levels. Our data support the hypothesis that, in the light, cytokinins interact with the ethylene-signalling pathway and conditionally up-regulate ethylene and auxin synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–d
Fig. 2a, b
Fig. 3a–e
Fig. 4

Similar content being viewed by others

Abbreviations

ACC :

1-Aminocyclopropane-1-carboxylic acid

AVG :

Aminoethoxyvinylglycine

BA :

N6-Benzyladenine

GUS :

β-Glucuronidase

IAA :

Indole-3-acetic acid

NPA :

α-Naphthylphthalamic acid

LNM :

Low-nutrition medium

References

  • Abel S, Nguyen M, Chow W, Theologis A (1995) ACS4, a primary indole acetic acid-responsive gene encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis thaliana. J Biol Chem 270:19093–19099

    Article  CAS  PubMed  Google Scholar 

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152

    Article  CAS  PubMed  Google Scholar 

  • Beyer EM (1976) A potent inhibitor of ethylene action in plants. Plant Physiol 58:268–271

    CAS  Google Scholar 

  • Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086–1089

    CAS  Google Scholar 

  • Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inze D (1995) Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7:1405–1419

    Article  CAS  PubMed  Google Scholar 

  • Cary AJ, Liu W, Howell SH (1995) Cytokinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyl elongation in Arabidopsis thaliana seedlings. Plant Physiol 107:1075–1082

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Kwok SF, Bleecker AB, Meyerowitz EM (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539–544

    CAS  PubMed  Google Scholar 

  • Deruère J, Kieber JJ (2002) Molecular mechanisms of cytokinin signalling. J Plant Growth Regul 21:32–39

    Article  PubMed  Google Scholar 

  • Ecker JR (1995) The ethylene signal transduction pathway in plants. Science 268:667–675

    CAS  PubMed  Google Scholar 

  • Friml J, Winiewska J, Benkova E, Mendgen K, Palme K (2002) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    PubMed  Google Scholar 

  • Fujita H, Syono K (1997) PIS1, a negative regulator of the action of auxin transport inhibitors in Arabidopsis thaliana. Plant J 12:583–595

    Article  CAS  PubMed  Google Scholar 

  • Guzmán P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523

    Article  PubMed  Google Scholar 

  • Hall MA, Smith AR, Moshkov IE, Novikova GV (1999) Ethylene–cytokinin interaction in signal transduction. Adv Reg Plant Growth Dev 111–118

  • Hamant O, Nogué F, Belles-Boix E, Jublot D, Grandjean O, Traas J, Pautot V (2002) The KNAT2 homeodomain protein interacts with ethylene and cytokinin signaling. Plant Physiol 130:657–665

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA (1987) Assay for chimeric genes in plants: the GUS fusion system. Plant Mol Biol Rep 5:387–405

    CAS  Google Scholar 

  • Jensen PJ, Hangarter RP, Estelle M (1998) Auxin transport is required for hypocotyl elongation in light-grown but not dark-grown Arabidopsis. Plant Physiol 116:455–462

    Article  CAS  PubMed  Google Scholar 

  • Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72:427–441

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kim WT, Kang BG, Yang SF (1997) Induction of 1-aminocyclopropane-1-carboxylate oxidase mRNA by ethylene in mung bean hypocotyls: involvement of both protein phosphorylation and dephosphorylation in ethylene signalling. Plant J 11:399–405

    Article  CAS  Google Scholar 

  • Kim JH, Kim WT, Kang BG (2001) IAA and N6-benzyladenine inhibit ethylene-regulated expression of ACC oxidase and ACC synthase genes in mungbean hypocotyls. Plant Cell Physiol 42:1056–1061

    Article  CAS  PubMed  Google Scholar 

  • Lau OL, John WW, Yang SF (1977) Effect of different cytokinins on ethylene production by mungbean hypocotyls in the presence of indole-3-acetic acid or calcium ions. Physiol Plant 39:1–3

    CAS  Google Scholar 

  • Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28:465–474

    Article  CAS  PubMed  Google Scholar 

  • Morgan DG (1964) Influence of α-naphthylphthalamic acid on the movement of indolyl-3-acetic acid in plants. Nature 201:476-477

    CAS  PubMed  Google Scholar 

  • Nakamura A, Higuchi K, Goda H, Fujiwara MT, Sawa S, Koshiba T, Shimada Y, Yoshida S (2003) Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol 133:1843–1853

    Article  CAS  PubMed  Google Scholar 

  • Netting AG, Duffield AM (1985) Positive and negative ion methane chemical ionisation mass spectrometry of amino acid pentafluorobenzyl derivates. Biomed Mass Spectrom 12:668–672

    CAS  Google Scholar 

  • Persson J, Näsholm T (2001) A GC-MS method for determination of amino acid uptake by plants. Physiol Plant 113:352–358

    Article  CAS  PubMed  Google Scholar 

  • Prinsen E, Van Dongen W, Esmans E, Van Onckelen H (1998) Micro and capillary liquid chromatography–tandem mass spectrometry: a new dimension in phytohormone research. J Chromatogr A 826:25–37

    Article  CAS  Google Scholar 

  • Prinsen E, Van Laer S, Öden S, Van Onckelen H (2000) Auxin analysis. In: Tucker GA, Roberts JA (eds) Methods in molecular biology, vol 141: Plant hormone protocols. Humana Press, Totowa, NJ, pp 49–65

  • Romano CP, Robson PR, Smith H, Estelle M, Klee H (1995) Transgene-mediated auxin overproduction in Arabidopsis: hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resistant mutants. Plant Mol Biol 27:1071–1083

    Article  CAS  PubMed  Google Scholar 

  • Saibo NJM, Vriezen WH, Beemster GTS, Van Der Straeten D (2003) Growth and stomata development of Arabidopsis hypocotyls are controlled by gibberellins and modulated by ethylene and auxins. Plant J 33:989–1000

    CAS  PubMed  Google Scholar 

  • Smalle J, Haegman M, Kurepa J, Van Montagu M, Van Der Straeten D (1997) Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. Proc Natl Acad Sci USA 94:2756–2761

    Article  CAS  PubMed  Google Scholar 

  • Smets R, Claes V, Van Onckelen H, and Prinsen E (2003) Extraction and quantitative analysis of 1-aminocyclopropane-1-carboxylic acid in plant tissue by gas chromatography coupled to mass spectrometry. J Chromatogr A 993:79–87

    Article  CAS  PubMed  Google Scholar 

  • Su W, Howell SH (1995) The effects of cytokinin and light on hypocotyl elongation are independent and additive. Plant Physiol 108:1423–1430

    CAS  PubMed  Google Scholar 

  • Timpte CS, Wilson AK, Estelle M (1992) Effects of the axr2 mutation of Arabidopsis on cell shape in hypocotyl and inflorescence. Planta 188:271–278

    CAS  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle T (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    Article  CAS  PubMed  Google Scholar 

  • Vandenbussche F, Smalle J, Le J, Saibo NJM, De Paepe A, Chaerle L, Tietz O, Smets R, Laarhoven JJJ, Harren FJM, Van Onckelen H, Palme K, Verbelen J-P, Van Der Straeten D (2003) The Arabidopsis mutant alh1 illustrates a cross talk between ethylene and auxin. Plant Physiol 131:1228–1238

    Article  CAS  PubMed  Google Scholar 

  • Vogel JP, Schuerman P, Woeste K, Brandstatter I, Kieber J (1998a) Isolation and characterisation of Arabidopsis mutants defective in the induction of ethylene biosynthesis by cytokinin. Genetics 149:417–427

    CAS  PubMed  Google Scholar 

  • Vogel JP, Woeste KE, Theologis A, Kieber JJ (1998b) Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc Natl Acad Sci USA 95:4766–4771

    Article  CAS  PubMed  Google Scholar 

  • Woeste KE, Vogel JP, Kieber JJ (1999) Factors regulating ethylene biosynthesis in etiolated Arabidopsis thaliana seedlings. Physiol Plant 105:478–484

    Article  CAS  Google Scholar 

  • Yoon IS, Mori H, Kim JH, Kang BG, Imaseki H (1997) VR-ACS6 is an auxin-inducible 1-aminocyclopropane-1-carboxylate synthase gene in mungbean (Vigna radiata). Plant Cell Physiol 38:217–224

    CAS  PubMed  Google Scholar 

  • Yoshii H, Imaseki H (1982) Regulation of auxin-induced ethylene biosynthesis. Repression of inductive formation of 1-aminocyclopropane-1-carboxylate synthase by ethylene. Plant Cell Physiol 23:639–649

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. A. Azmi (Department of Niology, University of Antwerp, Belgium) for advice and assistance and Dr. S. Nauwelaerts (Department of Biology, University of Antwerp, Belgium) for help on the statistical analyses. We are grateful to Prof. D. Van Der Straeten (Department of Molecular Genetics, Ghent University, Belgium) and Dr. T. Beeckman (Department of Plant Systems Biology, Ghent University, Belgium) for the gift of the ethylene-response mutants and the DR5::GUS line, respectively, and to Dr. J. Blakeslee (Purdue University, West Lafayette, Indiana, USA) for critical reading of the manuscript. This work was supported by grant P5/13 from the “Interuniversity Attraction Poles Programme—Belgian State—Federal Office for Scientific, Technical and Cultural Affairs”. R.S. and J.L. equally contributed to this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henri A. Van Onckelen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smets, R., Le, J., Prinsen, E. et al. Cytokinin-induced hypocotyl elongation in light-grown Arabidopsis plants with inhibited ethylene action or indole-3-acetic acid transport. Planta 221, 39–47 (2005). https://doi.org/10.1007/s00425-004-1421-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1421-4

Keywords

Navigation