Skip to main content
Log in

A Zea mays 39-kDa thylakoid transglutaminase catalyses the modification by polyamines of light-harvesting complex II in a light-dependent way

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

A transglutaminase (TGase; EC 2.3.2.13) activity, which shared many properties with the TGase activity of the Helianthus tuberosus chloroplast, was observed in the Zea mays L. chloroplast and in its fractions. This activity was found to be prevalent in thylakoids; bis-(glutamyl) spermidine and bis-(glutamyl) putrescine were the main polyamine conjugates formed. Light stimulated the endogenous thylakoid activity. Putrescine, spermidine and spermine were conjugated to the isolated light-harvesting complex of photosystem II (LHCII) with different degrees of efficiency, spermine being the polyamine most efficiently conjugated. A TGase with a light-sensitive activity was identified in the photosystem II-enriched fraction. Its partial purification on a sucrose gradient allowed the separation of a 39-kDa band, which was immunorecognised by two anti-TGase antibodies (Ab-3 and rat prostatic gland-TGase). Both a colorimetric and a radiometric assay for TGase activity, the former carried out in the presence of biotinylated cadaverine and the latter in the presence of polyamines labelled with radioactive isotopes and resulting in the isolation of glutamyl-polyamines, further confirmed that the thylakoid enzyme is indeed a calcium-dependent transglutaminase (Thyl-TGase). At variance with guinea pig liver and erythrocyte TGases, which are insensitive to light, the activity of the thylakoid transglutaminase is affected by light. Moreover, this enzyme, when tested with purified LHCII as substrate, catalysed the production of mono- and bis-glutamyl-polyamines in equal amounts, whereas the ‘animal’ enzymes produced mainly mono-derivatives. Herein, it is discussed whether this light sensitivity is due to the enzyme or the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2a,b
Fig. 3a,b
Fig. 4
Fig. 5a,b
Fig. 6
Fig. 7a,b
Fig. 8

Similar content being viewed by others

Abbreviations

bis-PU :

Bis-(γ-glutamyl) putrescine

bis-SD :

Bis-(γ-glutamyl) spermidine

bis-SM :

Bis-(γ-glutamyl) spermine

Er-TGase :

Erythrocyte transglutaminase

Gpl-TGase :

Guinea pig liver transglutaminase

LHCII :

Light-harvesting complex II

mono-PU :

Mono-(γ-glutamyl) putrescine

mono-SD :

Mono-(γ-glutamyl) spermidine

mono-SM :

Mono-(γ-glutamyl) spermine

PA :

Polyamine

PU :

Putrescine

SD :

Spermidine

SM :

Spermine

Rpg-TGase :

Rat prostatic gland transglutaminase

Thyl-TGase :

Thylakoid transglutaminase

References

  • Andreadakis A, Kotzabasis K (1995) Changes in the biosynthesis and catabolism of polyamines in isolated plastids during the chloroplast photodevelopment. J Photochem Photobiol B 33:163–170

    Article  Google Scholar 

  • Bassi R, Dainese P (1992) A supramolecular antenna complex from the chloroplast photosystem II membranes. Eur J Biochem 204:317–326

    CAS  PubMed  Google Scholar 

  • Beigbeder A, Vavadakis M, Navakoudis M, Kotzabasis K (1995) Influence of polyamine inhibitors on light-independent and light-dependent chlorophyll biosynthesis and on the photosynthetic rate. J Photochem Photobiol B 28:235–242

    Article  CAS  Google Scholar 

  • Bernet E, Claparols I, Dondini L, Santos MA, Serafini-Fracassini D, Torné JM (1999) Changes in polyamine content, arginine and ornithine decarboxylases and transglutaminase activities during light/dark phases of initial differentiation in maize calluses and their chloroplasts. Plant Physiol Biochem 37:1–11

    Article  Google Scholar 

  • Berthold DA, Babcock GT, Yocum CF (1981) A highly resolved oxygen-evolving photosystem II preparation from spinach thylakoid membranes FEBS Lett 134:231–234

    Google Scholar 

  • Besford RT, Richardson CM, Campos JL, Tiburcio AF (1993) Effect of polyamines on stabilization of molecular complexes in thylakoid membranes of osmotically stressed oat leaves. Planta 189:201–206

    CAS  Google Scholar 

  • Caffarri S, Croce R, Breton J, Bassi R (2001) The major antenna complex of photosystem II (LHCII) has a xanthophyll binding site not involved in light harvesting. J Biol Chem 276:35924–35933

    Article  CAS  PubMed  Google Scholar 

  • Casadio R, Polverini D, Mariani I, Spinozzi F, Carsughi F, Fontana A, de Polverino Laureto P, Matteucci G, Bergamini C (1999) The structural basis for regulation of tissular transglutaminase by calcium ion. Eur J Biochem 262:672–679

    Article  CAS  PubMed  Google Scholar 

  • Dainese P, Hoyer-Hansen G, Bassi R (1990) The resolution of Chlorophyll a/b binding proteins by a preparative method based on flat bed isoelectric focusing. Photochem Photobiol 51:693–703

    CAS  Google Scholar 

  • Del Duca S, Tidu V, Bassi R, Serafini-Fracassini D, Esposito C (1994) Identification of transglutaminase activity and its substrates in isolated chloroplast of Helianthus tuberosus. Planta 193:283–289

    Google Scholar 

  • Del Duca S, Beninati S, Serafini-Fracassini D (1995) Polyamines in chloroplasts: identification of their glutamyl- and acetyl-derivatives. Biochem J 305:233–237

    PubMed  Google Scholar 

  • Del Duca S, Dondini L, Della Mea M, Muñoz de Rueda P, Serafini-Fracassini D (2000) Factors affecting transglutaminase activity catalysing polyamine conjugation to endogenous substrates in the entire chloroplast. Plant Physiol Biochem 38:429–439

    Article  Google Scholar 

  • Di Paolo ML, Peruffo dal Belin A, Bassi R (1990) Immunological studies on chlorophyll a/b proteins and their location in chloroplast membrane domains. Planta 181:275–286

    Google Scholar 

  • Dondini L, Del Duca S, Dall’Agata L, Bassi R, Gastaldelli M, Della Mea M, Di Sandro A, Claparols I, Serafini-Fracassini D (2003) Suborganellar localisation and effect of light on Helianthus tuberosus chloroplast transglutaminases and their substrates. Planta 217:84–95

    CAS  PubMed  Google Scholar 

  • Dörnemann D, Navakoudis E, Kotzabasis K (1996) Changes in the polyamine content of plastidial membranes in light- and dark-grown wild type and pigment mutants of the unicellular green alga Scenedesmus obliquus and their possible role in chloroplast photodevelopment. J Photochem Photobiol B 36:293–299

    Article  Google Scholar 

  • Dunahay TG, Stahelin LA, Seibert M, Ogilvie PD, Berg SP (1984) Structural, biochemical and biophysical characterisation of four oxygen-evolving photosystem II preparations from spinach. Biochim Biophys Acta 764:179–193

    Article  CAS  Google Scholar 

  • Duran R, Junqua M, Schmitter JM, Gancet C, Goulas P (1998) Purification, characterisation, and gene cloning of transglutaminase from Streptoverticillium cinnamoneum CBS6S3.68. Biochemistry 80:313–319

    Article  CAS  Google Scholar 

  • Eshaghi S, Andersson B, Barber J (1999) Isolation of a highly active PSII–LHCII supercomplex from thylakoid membranes by a direct method. FEBS Lett 466:23–26

    Article  Google Scholar 

  • Folk JE (1980) Transglutaminases. Annu Rev Biochem 49:517–531

    Google Scholar 

  • Folk JE, Park MH, Chung SI, Schrode J, Lester EP, Cooper HL (1980) Polyamines as physiological substrates for transglutaminase. J Biol Chem 255:3695–3700

    CAS  PubMed  Google Scholar 

  • Galston AW, Kaur-Sawhney R (1990) Polyamines in plant physiology. Plant Physiol 94:406–410

    CAS  PubMed  Google Scholar 

  • Grove GN, Brudvig GW (1998) Calcium binding studies of photosystem II using a calcium-selective electrode. Biochemistry 37:1532–1539

    Article  CAS  PubMed  Google Scholar 

  • Griffin M, Casadio R, Bergamini CM (2002) Transglutaminases: nature’s biological glues. Biochem J 368:377–396

    Article  CAS  PubMed  Google Scholar 

  • Hames BD, Rickwood D eds (1990) Gel electrophoresis of proteins. A practical approach. Oxford University Press, Oxford, pp 1–383

  • Kotzabasis K, Fotinou C, Roubelakis-Angelakis KA, Ghanotakis D (1993) Polyamines in the photosynthetic apparatus. Photosynth Res 38:83–88

    CAS  Google Scholar 

  • Kotzabasis K, Strasser B, Navakoudis E, Senger H, Dörnemann D (1999) The regulatory role of polyamines in structure and functioning of the photosynthetic apparatus during photoadaptation. J Photochem Photobiol B 50:45–52

    Article  CAS  Google Scholar 

  • Kramer GF, Krizek DT, Mirecki RM (1992) Influence of photosynthetically active radiation and spectral quality on UV-B-induced polyamine accumulation in soybean. Phytochemistry 31:1119–1125

    Article  CAS  Google Scholar 

  • Kuhlbrandt W, Wang DN, Fujiyoshi (1994) Atomic model of plant light harvesting. Nature 267:614–621

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–683

    PubMed  Google Scholar 

  • Legocka J, Zajchert I (1999) Role of spermidine in the stabilization of the apoprotein of the light-harvesting chlorophyll a:b–protein complex of photosystem II during leaf senescence process. Acta Physiol Plant 21:127–132

    CAS  Google Scholar 

  • Lilley G, Skill J, Griffin M, Bonner P (1998) Detection of Ca2+-dependent transglutaminase activity in root and leaf tissue of monocotyledonous and dicotyledonous plants. Plant Physiol 117:1115–1123

    Article  CAS  PubMed  Google Scholar 

  • Lorand L, Graham RM (2003) Transglutaminases. Crosslinking enzymes with pleiotropic function. Nat Rev Mol Cell Biol 4:140–156

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Machold O, Meister A (1979) Resolution of the light-harvesting chlorophyll a/b–protein of Vicia faba chloroplasts into two different chlorophyll–protein complexes. Biochim Biophys Acta 546:472–480

    Article  CAS  PubMed  Google Scholar 

  • Paonessa S, Metafora S, Tajana G, Abrescia P, De Santis A Gentile V, Porta R (1984) Transglutaminase-mediated modification of the rat sperm surface in vitro. Science 226:852–855

    CAS  PubMed  Google Scholar 

  • Santini C, Tidu V, Tognon G, Ghiretti Magaldi A, Bassi R (1994) Three-dimensional structure of the higher-plant photosystem II reaction centre and evidence for its dimeric organization in vivo. Eur J Biochem 221:307–315

    CAS  PubMed  Google Scholar 

  • Serafini-Fracassini D, Del Duca S (2002) Biochemistry and function of plant transglutaminases. Minerva Biotec 14:135–141

    Google Scholar 

  • Serafini-Fracassini D, Del Duca S, D’Orazi D (1988) First evidence for polyamine conjugation mediated by an enzymic activity in plants. Plant Physiol 87:757–761

    CAS  Google Scholar 

  • Signorini M, Beninati S, Bergamini C (1991) Identification of transglutaminase activity in the leaves of silver beet (Beta vulgaris L). J Plant Physiol 137:547–552

    CAS  Google Scholar 

  • Torrigiani P, Serafini-Fracassini D, Biondi S, Bagni N (1986) Evidence for subcellular localization of polyamines and their biosynthetic enzymes in plant cells. J Plant Physiol 124:23–29

    CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfers of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    CAS  PubMed  Google Scholar 

  • Zer H, Vink M, Keren N, Dilly-Hartwig HG, Paulsen H, Herrmann RG, Andersson B, Ohad I (1999) Regulation of thylakoid protein phosphorylation at the substrate level: reversible light-induced conformation changes expose the phosphorylation site of the light-harvesting complex II. Proc Natl Acad Sci USA 96:8277–8282

    Article  CAS  PubMed  Google Scholar 

  • Zhang SR, Li SH, Abler A, Fu J, Tso MO, Lam TT (1996) Tissue transglutaminase in apoptosis of photoreceptor cells in rat retina. Invest Ophthalmol Vis Sci 37:1793–1799

    CAS  PubMed  Google Scholar 

  • Zhu Y, Rinzema A, Tramper J, Bol J (1995) ‘Microbial transglutaminase’ a review of its production and application in food processing. Appl Microbial Biotech 44:277–282

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Bologna (ex 60% and Funds for Selected Topics: ‘Segnali molecolari nel differenziamento cellulare’) and by”MIUR” Projects FIRB No. RBAU01KZ49 to Serafini-Fracassini; “MIUR” Projects FIRB No. RBAU01E3CX and FIRB No. RBNE01LACT to R.B. and F.V. We are very indebted to Prof. A. Serafini-Fracassini (Emeritus Professor of the University of St. Andrews, Scotland) for the restyling of the English manuscript. The authors are grateful to Prof. L. Moggi of the Dipartimento Ciamician, Gruppo Fotochimica, University of Bologna for the suggestions about the polyamine/chlorophyll interactions, to Henkel S.p.A. (Fino Mornasco, Como) for the kind gift of Deriphat C 160 KPC. We acknowledge the technical assistance of N. Mele for photographic and image assistance and of Dr. C. Pagnucco for HPLC analysis of some of the glutamyl-derivatives

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Serafini-Fracassini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Della Mea, M., Di Sandro, A., Dondini, L. et al. A Zea mays 39-kDa thylakoid transglutaminase catalyses the modification by polyamines of light-harvesting complex II in a light-dependent way. Planta 219, 754–764 (2004). https://doi.org/10.1007/s00425-004-1278-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1278-6

Keywords

Navigation