Skip to main content
Log in

Subcellular localization of two types of ferrochelatase in cucumber

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

It is widely believed that ferrochelatase (protoheme ferrolyase, EC 4.99.1.1), which catalyzes the insertion of ferrous ion into protoporphyrin IX to form protoheme, exists in both plastids and mitochondria of higher plants. By in vitro import assay with isolated pea (Pisum sativum L.) organelles, it has been proposed that one of two isoforms of ferrochelatase (type 1) is dual-targeted into both plastids and mitochondria, and functions for heme biosynthesis in the both organelles. Recently, however, mitochondrial targeting of ferrochelatase is being disputed since pea mitochondria appeared to accept a variety of chloroplast proteins including the type-1 ferrochelatase of Arabidopsis thaliana (L.) Heynh. To clarify the precise subcellular localization of ferrochelatase in higher plants, here we investigated the subcellular localization of two types of ferrochelatase (CsFeC1 and CsFeC2) in cucumber (Cucumis sativus L.). In cotyledons, a significant level of specific ferrochelatase activity was detected in thylakoid membranes, but only a trace level of activity was detectable in mitochondria. Western blot analysis with specific antibodies showed that anti-CsFeC2 antiserum cross-reacted with plastids in photosynthetic and non-photosynthetic tissues. Anti-CsFeC1 did not cross-react with mitochondria, but CsFeC1 was clearly detectable in plastids from non-photosynthetic tissues. In situ transient-expression assays using green fluorescent protein demonstrated that, as well as CsFeC2, the N-terminal transit peptide of CsFeC1 targeted the fusion protein solely into plastids, but not into mitochondria. These results demonstrated that in cucumber both CsFeC1 and CsFeC2 are solely targeted into plastids, but not into mitochondria. Screening of a cucumber genomic or cDNA library did not allow any other ferrochelatase homologous gene to be isolated. The data presented here imply the reconsideration of mitochondrial heme biosynthesis in higher plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–c.
Fig. 2a–e.
Fig. 3a–f.
Fig. 4a–f.

Similar content being viewed by others

Abbreviations

GFP:

green fluorescent protein

LHCP:

apoproteins for light harvesting chlorophyll a/b-binding protein

LSU:

large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase

Mn-SOD:

Mn-superoxide dismutase

SSU:

small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase

References

  • Beale SI, Weinstein JD (1990) Tetrapyrrole metabolism in photosynthetic organisms. In: Dailey HA (ed) Biosynthesis of heme and chlorophylls, McGraw-Hill, New York, pp 287–391

  • Chiu W, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J (1996) Engineered GFP as a vital reporter in plants. Curr Biol 6:325–330

    CAS  PubMed  Google Scholar 

  • Chow K-S, Singh DP, Roper JM, Smith AG (1997) A single precursor protein for ferrochelatase-I from Arabidopsis is imported in vitro into both chloroplasts and mitochondria. J Biol Chem 272:27565–27571

    Article  CAS  PubMed  Google Scholar 

  • Chow K-S, Singh PD, Walker AR, Smith AG (1998) Two different genes encode ferrochelatase in Arabidopsis: mapping, expression and subcellular targeting of the precursor proteins. Plant J 15:531–541

    Article  CAS  PubMed  Google Scholar 

  • Cleary SP, Tan F-C, Nakrieko K-A, Thompson SJ, Mullineaux PM, Creissen GP, von Stedingk E, Glaser E, Smith AG, Robinson C (2002) Isolated plant mitochondria import chloroplast precursor proteins in vitro with the same efficiency as chloroplasts. J Biol Chem 277:5562–5569

    Article  CAS  PubMed  Google Scholar 

  • Cornah JE, Roper JM, Singh DP, Smith AG (2002) Measurement of ferrochelatase activity using a novel assay suggests that plastids are the major site of haem biosynthesis in both photosynthetic and non-photosynthetic cells of pea (Pisum sativum L.). Biochem J 362:423–432

    Article  CAS  PubMed  Google Scholar 

  • Douce R, Joyard J (1982) Purification of the chloroplast envelope. In: Edelman M, Hallick RB, Chua, N-H (eds) Methods in chloroplast molecular biology. Elsevier, Amsterdam, pp 239–256

  • Fuesler TP, Castelfranco PA, Wong YS (1984) Formation of Mg-containing chlorophyll precursors from protoporphyrin IX, δ-aminolevulinic acid, and glutamate in isolated photosynthetically competent, developing chloroplasts. Plant Physiol 74:928–933

    CAS  Google Scholar 

  • Giglione C, Serero A, Pierre M, Boisson B, Meinnel T (2000) Identification of eukaryotic peptide deformylases reveals universality of N-terminal protein processing mechanisms. EMBO J 19:5916–5929

    Google Scholar 

  • Hansen J, Muldbjerg M, Cherest H, Surdin-Kerjan Y (1997) Siroheme biosynthesis in Saccharomyces cerevisiae required the products of both the MET1 and MET8 genes. FEBS Lett 401:20–24

    Article  CAS  PubMed  Google Scholar 

  • Jones OTG (1967) Heme biosynthesis by isolated chloroplasts. Biochem Biophys Res Commun 28:671–674

    CAS  PubMed  Google Scholar 

  • Jones OTG (1968) Ferrochelatase of spinach chloroplasts. Biochem J 107:113–119

    CAS  PubMed  Google Scholar 

  • Kohler R, Hanson MR (2000) Plastid tubules of higher plants are tissue-specific and developmentally regulated. J Cell Sci 113:81–89

    CAS  PubMed  Google Scholar 

  • Lange H, Kispel G, Lill R (1999) Mechanism of iron transport to the site of heme synthesis inside yeast mitochondria. J Biol Chem 274:18989–18996

    Article  CAS  PubMed  Google Scholar 

  • Lermontova I, Kruse E, Mock HP, Grimm B (1997) Cloning and characterization of a plastidal and a mitochondrial isoform of tobacco protoporphyrinogen IX oxidase. Proc Natl Acad Sci USA 94:8895–8900

    Article  CAS  PubMed  Google Scholar 

  • Leustek T, Smith M, Murillo M, Singh DP, Smith AG, Woodcock S, Awan SJ, Warren MJ (1997) Siroheme biosynthesis in higher plants: Analysis of an S-adenosyl-l-methionine-dependent uroporphyrinogen III methyltransferase from Arabidopsis thaliana. J Biol Chem 272:2744–2752

    Article  CAS  PubMed  Google Scholar 

  • Lister R, Chew O, Rudhe C, Lee M-N, Whelan J (2001) Arabidopsis thaliana ferrochelatase-I and -II are not imported into Arabidopsis mitochondria. FEBS Lett 506:291–295

    Article  CAS  PubMed  Google Scholar 

  • Little HN, Jones OTG (1976) The subcellular localization and properties of the ferrochelatase of etiolated barley. Biochem J 156:309–314

    CAS  PubMed  Google Scholar 

  • Menand B, Maréchal-Drouard L, Sakamoto W, Dietrich A, Wintz H (1998) A single gene of chloroplast origin codes for mitochondrial and chloroplastic methionyl-tRNA synthetase in Arabidopsis thaliana. Proc Natl Acad Sci USA 95:11014–11019

    CAS  PubMed  Google Scholar 

  • Miyamoto K, Tanaka R, Teramoto H, Masuda T, Tsuji H, Inokuchi H (1994) Nucleotide sequences of cDNA clones encoding ferrochelatase from barley and cucumber. Plant Physiol 105:769–770

    Article  CAS  PubMed  Google Scholar 

  • Nishimura M, Douce R, Akazawa T (1982) Isolation and characterization of metabolically competent mitochondria from spinach leaf protoplasts. Plant Physiol 69:916–920

    CAS  Google Scholar 

  • Papenbrock J, Mishra S, Mock H-P, Kruse E, Schmidt E-K, Petersman A, Braun H-P, Grimm B (2001) Impaired expression of the plastidic ferrochelatase by antisense RNA synthesis leads to a necrotic phenotype of transformed tobacco plants. Plant J 28:41–50

    Article  CAS  PubMed  Google Scholar 

  • Porra RJ, Jones OTG (1963) Studies on ferrochelatase. Biochem J 87:181–185

    CAS  Google Scholar 

  • Porra RJ, Lascelles J (1968) Studies on ferrochelatase: the enzymatic formation of haem in proplastids, chloroplasts and plant mitochondria. Biochem J 108:343–348

    CAS  PubMed  Google Scholar 

  • Raux E, McVeigh T, Peters SE, Leustek T, Warren MJ (1999) The role of Saccharomyces cerevisiae Met1p and Met8p in sirohaem and cobalamin biosynthesis. Biochem J 338:701–708

    Article  CAS  PubMed  Google Scholar 

  • Smith AG, Marsh O, Elder GH (1993) Investigation of the subcellular location of the tetrapyrrole-biosynthesis enzyme coproporphyrinogen oxidase in higher plants. Biochem J 292:503–508

    CAS  PubMed  Google Scholar 

  • Smith AG, Santana MA, Wallace-Cook ADM, Roper JM, Labbe-Bois R (1994) Isolation of a cDNA encoding chloroplast ferrochelatase from Arabidopsis thaliana by functional complementation of a yeast mutant. J Biol Chem 269:13405–13413

    CAS  PubMed  Google Scholar 

  • Spencer JB, Stolowich NJ, Roessner CA, Scott AI (1993) The Escherichia coli cysG gene encodes the multifunctional protein, sirohaem synthase. FEBS Lett 335:57–60

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Masuda T, Inokuchi H, Shimada H, Ohta H, Takamiya K (2000) Overexpression, enzymatic properties and tissue localization of a ferrochelatase of cucumber. Plant Cell Physiol 41:192–199

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Masuda T, Singh DP, Tan F-C, Tsuchiya T, Shimada H, Ohta H, Smith AG, Takamiya K (2002) Two types of ferrochelatase in photosynthetic and nonphotosynthetic tissues of cucumber. J Biol Chem 277:4731–4737

    Article  CAS  PubMed  Google Scholar 

  • Taketani S, Tokunaga R (1984) Non-enzymatic heme formation in the presence of fatty acids and thiol reductants. Biochim Biophys Acta 798:226–230

    Article  CAS  PubMed  Google Scholar 

  • Tanaka R, Yoshida K, Nakayashiki T, Masuda T, Tsuji H, Inokuchi H, Tanaka A (1996) Differential expression of two hemA mRNAs encoding glutamyl-tRNA reductase proteins in greening cucumber seedlings. Plant Physiol 110:1223–1230

    Article  CAS  PubMed  Google Scholar 

  • Walker CJ, Willows RD (1997) Mechanism and regulation of Mg-chelatase. Biochem J 327:321–333

    CAS  PubMed  Google Scholar 

  • Warren MJ, Bolt EL, Roessner CA, Scott AI, Spencer JB, WoodCock SC (1994) Gene dissection demonstrates that the Escherichia coli cysG gene encodes S-adenosylmethionine-dependent uroporphyrinogen III methylase. Biochem J 265:725–729

    Google Scholar 

  • Watanabe N, Che F-S, Iwano M, Takayama S, Yoshida S, Isogai A (2001) Dual targeting of spinach protoporphyrinogen oxidase II to mitochondria and chloroplasts by alternative use of two in-frame initiation codons. J Biol Chem 276:20474–20481

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Hu S, Wang J et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant-in-aid for Scientific Research from the Ministry of Education, Science and Culture of Japan. We thank Dr. M. Shibasaka for providing the antibody against Mn-SOD. We are also grateful for Dr. Y. Niwa for providing GFP vectors. T. Masuda and T. Suzuki contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Masuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masuda, T., Suzuki, T., Shimada, H. et al. Subcellular localization of two types of ferrochelatase in cucumber. Planta 217, 602–609 (2003). https://doi.org/10.1007/s00425-003-1019-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-1019-2

Keywords

Navigation