Skip to main content
Log in

Respiratory influence on brain dynamics: the preponderant role of the nasal pathway and deep slow regime

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

As a possible body signal influencing brain dynamics, respiration is fundamental for perception, cognition, and emotion. The olfactory system has recently acquired its credentials by proving to be crucial in the transmission of respiratory influence on the brain via the sensitivity to nasal airflow of its receptor cells. Here, we present recent findings evidencing respiration-related activities in the brain. Then, we review the data explaining the fact that breathing is (i) nasal and (ii) being slow and deep is crucial in its ability to stimulate the olfactory system and consequently influence the brain. In conclusion, we propose a possible scenario explaining how this optimal respiratory regime can promote changes in brain dynamics of an olfacto-limbic-respiratory circuit, providing a possibility to induce calm and relaxation by coordinating breathing regime and brain state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ackels T, Jordan R, Schaefer AT, Fukunaga I (2020) Respiration-locking of olfactory receptor and projection neurons in the mouse olfactory bulb and its modulation by brain state. Front Cell Neurosci 14:220

    Article  Google Scholar 

  2. Adrian ED (1942) Olfactory reactions in the brain of the hedgehog. J Physiol 100:459–473

    Article  Google Scholar 

  3. Adrian ED (1950) The electrical activity of the mammalian olfactory bulb. Electroencephalogr Clin Neurophysiol 2:377–388

    Article  Google Scholar 

  4. Adrian ED, Ludwig C (1938) Nervous discharges from the olfactory organs of fish. J Physiol 94:441

    Article  Google Scholar 

  5. Bagur S, Lefort JM, Lacroix MM, de Lavilléon G, Herry C, Chouvaeff M, Billand C, Geoffroy H, Benchenane K (2021) Breathing-driven prefrontal oscillations regulate maintenance of conditioned-fear evoked freezing independently of initiation. Nat Commun 12:1–15

    Article  Google Scholar 

  6. Biskamp J, Bartos M, Sauer J-F (2017) Organization of prefrontal network activity by respiration-related oscillations. Sci Rep 7:1–11

    Article  Google Scholar 

  7. Bouret S, Sara SJ (2002) Locus coeruleus activation modulates firing rate and temporal organization of odour-induced single-cell responses in rat piriform cortex. Eur J Neurosci 16:2371–2382

    Article  Google Scholar 

  8. Bressler SL (1984) Spatial organization of EEGs from olfactory bulb and cortex. Electroencephalogr Clin Neurophysiol 57:270–276

    Article  Google Scholar 

  9. Bressler SL (1987) Relation of olfactory bulb and cortex. I. Spatial variation of bulbocortical interdependence. Brain Res 409:285–293

    Article  Google Scholar 

  10. Briffaud V, Fourcaud-Trocmé N, Messaoudi B, Buonviso N, Amat C (2012) The relationship between respiration-related membrane potential slow oscillations and discharge patterns in mitral/tufted cells: what are the rules? PLoS ONE 7:e43964

    Article  Google Scholar 

  11. Buonviso N, Amat C, Litaudon P (2006) Respiratory modulation of olfactory neurons in the rodent brain. Chem Senses 31:145–154

    Article  Google Scholar 

  12. Buonviso N, Amat C, Litaudon P, Roux S, Royet J-P, Farget V, Sicard G (2003) Rhythm sequence through the olfactory bulb layers during the time window of a respiratory cycle. Eur J Neurosci 17:1811–1819

    Article  Google Scholar 

  13. Buonviso N, Chaput MA, Berthommier F (1992) Temporal pattern analyses in pairs of neighboring mitral cells. J Neurophysiol 68:417–424

    Article  Google Scholar 

  14. Cang J, Isaacson JS (2003) In vivo whole-cell recording of odor-evoked synaptic transmission in the rat olfactory bulb. J Neurosci 23:4108–4116

    Article  Google Scholar 

  15. Carmichael ST, Price JL (1995) Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J Comp Neurol 363:615–641. https://doi.org/10.1002/cne.903630408

    Article  Google Scholar 

  16. Cavelli M, Castro-Zaballa S, Gonzalez J, Rojas-Líbano D, Rubido N, Velásquez N, Torterolo P (2020) Nasal respiration entrains neocortical long-range gamma coherence during wakefulness. Eur J Neurosci 51:1463–1477

    Article  Google Scholar 

  17. Cavelli M, Rojas-Líbano D, Schwarzkopf N, Castro-Zaballa S, Gonzalez J, Mondino A, Santana N, Benedetto L, Falconi A, Torterolo P (2018) Power and coherence of cortical high-frequency oscillations during wakefulness and sleep. Eur J Neurosci 48:2728–2737

    Article  Google Scholar 

  18. Cenier T, David F, Litaudon P, Garcia S, Amat C, Buonviso N (2009) Respiration-gated formation of gamma and beta neural assemblies in the mammalian olfactory bulb. Eur J Neurosci 29:921–930

    Article  Google Scholar 

  19. Chaput M, Holley A (1979) Spontaneous activity of olfactory bulb neurons in awake rabbits, with some observations on the effects of pentobarbital anaesthesia. J Physiol (Paris) 75:939–948

    Google Scholar 

  20. Chaput M, Holley A (1980) Single unit responses of olfactory bulb neurones to odour presentation in awake rabbits. J Physiol (Paris) 76:551–558

    Google Scholar 

  21. Chaput MA (2000) EOG responses in anesthetized freely breathing rats. Chem Senses 25:695–701

    Article  Google Scholar 

  22. Charpak S, Mertz J, Beaurepaire E, Moreaux L, Delaney K (2001) Odor-evoked calcium signals in dendrites of rat mitral cells. Proc Natl Acad Sci 98:1230–1234

    Article  Google Scholar 

  23. Connelly T, Yu Y, Grosmaitre X, Wang J, Santarelli LC, Savigner A, Qiao X, Wang Z, Storm DR, Ma M (2015) G protein-coupled odorant receptors underlie mechanosensitivity in mammalian olfactory sensory neurons. Proc Natl Acad Sci 112:590–595

    Article  Google Scholar 

  24. Courtiol E, Amat C, Thevenet M, Messaoudi B, Garcia S, Buonviso N (2011) Reshaping of bulbar odor response by nasal flow rate in the rat. PLoS ONE 6:e16445

    Article  Google Scholar 

  25. Courtiol E, Hegoburu C, Litaudon P, Garcia S, Fourcaud-Trocmé N, Buonviso N (2011) Individual and synergistic effects of sniffing frequency and flow rate on olfactory bulb activity. J Neurophysiol 106:2813–2824

    Article  Google Scholar 

  26. Cury KM, Uchida N (2010) Robust odor coding via inhalation-coupled transient activity in the mammalian olfactory bulb. Neuron 68:570–585

    Article  Google Scholar 

  27. David F, Courtiol E, Buonviso N, Fourcaud-Trocmé N (2015) Competing mechanisms of gamma and beta oscillations in the olfactory bulb based on multimodal inhibition of mitral cells over a respiratory cycle. eNeuro 2(6):ENEURO.0018-15.2015. https://doi.org/10.1523/ENEURO.0018-15.2015

  28. Dlouhy BJ, Gehlbach BK, Kreple CJ, Kawasaki H, Oya H, Buzza C, Granner MA, Welsh MJ, Howard MA, Wemmie JA (2015) Breathing inhibited when seizures spread to the amygdala and upon amygdala stimulation. J Neurosci 35:10281–10289

    Article  Google Scholar 

  29. Duchamp-Viret P, Kostal L, Chaput M, Lánsky P, Rospars J-P (2005) Patterns of spontaneous activity in single rat olfactory receptor neurons are different in normally breathing and tracheotomized animals. J Neurobiol 65:97–114

    Article  Google Scholar 

  30. Esclassan F, Courtiol E, Thévenet M, Garcia S, Buonviso N, Litaudon P (2012) Faster, deeper, better: the impact of sniffing modulation on bulbar olfactory processing. PLoS ONE 7:e40927

    Article  Google Scholar 

  31. Folschweiller S, Sauer JF (2021) Respiration-driven brain oscillations in emotional cognition. Front Neural Circuits 15:761812. https://doi.org/10.3389/fncir.2021.761812

  32. Fontanini A, Bower JM (2005) Variable coupling between olfactory system activity and respiration in ketamine/xylazine anesthetized rats. J Neurophysiol 93:3573–3581

    Article  Google Scholar 

  33. Fontanini A, Bower JM (2006) Slow-waves in the olfactory system: an olfactory perspective on cortical rhythms. Trends Neurosci 29:429–437

    Article  Google Scholar 

  34. Fontanini A, Spano P, Bower JM (2003) Ketamine-xylazine-induced slow (< 1.5 Hz) oscillations in the rat piriform (olfactory) cortex are functionally correlated with respiration. J Neurosci 23:7993–8001

    Article  Google Scholar 

  35. Fourcaud-Trocmé N, Briffaud V, Thévenet M, Buonviso N, Amat C (2018) In vivo beta and gamma subthreshold oscillations in rat mitral cells: origin and gating by respiratory dynamics. J Neurophysiol 119:274–289

    Article  Google Scholar 

  36. Fourcaud-Trocmé N, Courtiol E, Buonviso N (2014) Two distinct olfactory bulb sublaminar networks involved in gamma and beta oscillation generation: a CSD study in the anesthetized rat. Front Neural Circuits 8:88

    Google Scholar 

  37. Freeman WJ (1959) Distribution in time and space of prepyriform electrical activity. J Neurophysiol 22:644–665

    Article  Google Scholar 

  38. Freeman WJ (1978) Spatial properties of an EEG event in the olfactory bulb and cortex. Electroencephalogr Clin Neurophysiol 44:586–605

    Article  Google Scholar 

  39. Freeman WJ, Schneider W (1982) Changes in spatial patterns of rabbit olfactory EEG with conditioning to odors. Psychophysiology 19:44–56

    Article  Google Scholar 

  40. Fukunaga I, Berning M, Kollo M, Schmaltz A, Schaefer AT (2012) Two distinct channels of olfactory bulb output. Neuron 75:320–329

    Article  Google Scholar 

  41. Fulwiler CE, Saper CB (1984) Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res Rev 7:229–259

    Article  Google Scholar 

  42. Fumoto M, Sato-Suzuki I, Seki Y, Mohri Y, Arita H (2004) Appearance of high-frequency alpha band with disappearance of low-frequency alpha band in EEG is produced during voluntary abdominal breathing in an eyes-closed condition. Neurosci Res 50:307–317

    Article  Google Scholar 

  43. Girin B, Juventin M, Garcia S, Lefèvre L, Amat C, Fourcaud-Trocmé N, Buonviso N (2021) The deep and slow breathing characterizing rest favors brain respiratory-drive. Sci Rep 11:7044. https://doi.org/10.1038/s41598-021-86525-3

    Article  Google Scholar 

  44. Gomez P, Stahel WA, Danuser B (2004) Respiratory responses during affective picture viewing. Biol Psychol 67:359–373

    Article  Google Scholar 

  45. Grosmaitre X, Santarelli LC, Tan J, Luo M, Ma M (2007) Dual functions of mammalian olfactory sensory neurons as odor detectors and mechanical sensors. Nat Neurosci 10:348–354

    Article  Google Scholar 

  46. Gschwend O, Beroud J, Carleton A (2012) Encoding odorant identity by spiking packets of rate-invariant neurons in awake mice. PLoS ONE 7:e30155

    Article  Google Scholar 

  47. Hammer M, Schwale C, Brankačk J, Draguhn A, Tort AB (2021) Theta-gamma coupling during REM sleep depends on breathing rate. Sleep 44:zsab189

    Article  Google Scholar 

  48. Harper RM, Frysinger RC, Trelease RB, Marks JD (1984) State-dependent alteration of respiratory cycle timing by stimulation of the central nucleus of the amygdala. Brain Res 306:1–8

    Article  Google Scholar 

  49. Herrero JL, Khuvis S, Yeagle E, Cerf M, Mehta AD (2018) Breathing above the brain stem: volitional control and attentional modulation in humans. J Neurophysiol 119(1):145–159. https://doi.org/10.1152/jn.00551.2017

  50. Hummel T, Frasnelli J (2019) The intranasal trigeminal system. Handb Clin Neurol 164:119–134

    Article  Google Scholar 

  51. Ito J, Roy S, Liu Y, Cao Y, Fletcher M, Lu L, Boughter JD, Grün S, Heck DH (2014) Whisker barrel cortex delta oscillations and gamma power in the awake mouse are linked to respiration. Nat Commun 5:3572. https://doi.org/10.1038/ncomms4572

    Article  Google Scholar 

  52. Jerath R, Edry JW, Barnes VA, Jerath V (2006) Physiology of long pranayamic breathing: neural respiratory elements may provide a mechanism that explains how slow deep breathing shifts the autonomic nervous system. Med Hypotheses 67:566–571

    Article  Google Scholar 

  53. Jung F, Witte V, Yanovsky Y, Klumpp M, Brankačk J, Tort ABL, Draguhn A (2022) Differential modulation of parietal cortex activity by respiration and θ oscillations. J Neurophysiol 127(3):801–817. https://doi.org/10.1152/jn.00376.2021

  54. Karalis N, Sirota A (2022) Breathing coordinates cortico-hippocampal dynamics in mice during offline states. Nat Commun 13:1–20

    Article  Google Scholar 

  55. Kay LM (2005) Theta oscillations and sensorimotor performance. Proc Natl Acad Sci 102:3863–3868

    Article  Google Scholar 

  56. Kay LM, Laurent G (1999) Odor-and context-dependent modulation of mitral cell activity in behaving rats. Nat Neurosci 2:1003–1009

    Article  Google Scholar 

  57. Kim MJ, Loucks RA, Palmer AL, Brown AC, Solomon KM, Marchante AN, Whalen PJ (2011) The structural and functional connectivity of the amygdala: from normal emotion to pathological anxiety. Behav Brain Res 223:403–410

    Article  Google Scholar 

  58. Köszeghy Á, Lasztóczi B, Forro T, Klausberger T (2018) Spike-timing of orbitofrontal neurons is synchronized with breathing. Front Cell Neurosci 12:105

    Article  Google Scholar 

  59. Lacuey N, Hupp NJ, Hampson J, Lhatoo S (2019) Ictal Central Apnea (ICA) may be a useful semiological sign in invasive epilepsy surgery evaluations. Epilepsy Res 156:106164

    Article  Google Scholar 

  60. Litaudon P, Amat C, Bertrand B, Vigouroux M, Buonviso N (2003) Piriform cortex functional heterogeneity revealed by cellular responses to odours. Eur J Neurosci 17:2457–2461

    Article  Google Scholar 

  61. Litaudon P, Garcia S, Buonviso N (2008) Strong coupling between pyramidal cell activity and network oscillations in the olfactory cortex. Neuroscience 156:781–787

    Article  Google Scholar 

  62. Liu Y, McAfee SS, Heck DH (2017) Hippocampal sharp-wave ripples in awake mice are entrained by respiration. Sci Rep 7:1–9

    Google Scholar 

  63. Lockmann AL, Laplagne DA, Leão RN, Tort AB (2016) A respiration-coupled rhythm in the rat hippocampus independent of theta and slow oscillations. J Neurosci 36:5338–5352

    Article  Google Scholar 

  64. Lutz A, Greischar LL, Rawlings NB, Ricard M, Davidson RJ (2004) Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. Proc Natl Acad Sci 101:16369–16373

    Article  Google Scholar 

  65. Macrides F, Chorover SL (1972) Olfactory bulb units: activity correlated with inhalation cycles and odor quality. Science 175:84–87

    Article  Google Scholar 

  66. Macrides F, Eichenbaum HB, Forbes WB (1982) Temporal relationship between sniffing and the limbic theta rhythm during odor discrimination reversal learning. J Neurosci 2:1705–1717

    Article  Google Scholar 

  67. Maier E, Lauer S, Brecht M (2020) Layer 4 organization and respiration locking in the rodent nose somatosensory cortex. J Neurophysiol 124:822–832

    Article  Google Scholar 

  68. Manabe H, Mori K (2013) Sniff rhythm-paced fast and slow gamma-oscillations in the olfactory bulb: relation to tufted and mitral cells and behavioral states. J Neurophysiol 110:1593–1599

    Article  Google Scholar 

  69. Manns ID, Alonso A, Jones BE (2003) Rhythmically discharging basal forebrain units comprise cholinergic, GABAergic, and putative glutamatergic cells. J Neurophysiol 89:1057–1066

    Article  Google Scholar 

  70. Masaoka Y, Koiwa N, Homma I (2005) Inspiratory phase-locked alpha oscillation in human olfaction: source generators estimated by a dipole tracing method. J Physiol 566:979–997

    Article  Google Scholar 

  71. McDonald AJ (1998) Cortical pathways to the mammalian amygdala. Prog Neurobiol 55:257–332

    Article  Google Scholar 

  72. Moberly AH, Schreck M, Bhattarai JP, Zweifel LS, Luo W, Ma M (2018) Olfactory inputs modulate respiration-related rhythmic activity in the prefrontal cortex and freezing behavior. Nat Commun 9:1–10

    Article  Google Scholar 

  73. Moberly AH, Schreck M, Bhattarai JP, Zweifel LS, Luo W, Ma M (2018) Olfactory inputs modulate respiration-related rhythmic activity in the prefrontal cortex and freezing behavior. Nat Commun 9:1528. https://doi.org/10.1038/s41467-018-03988-1

    Article  Google Scholar 

  74. Mofleh R, Kocsis B (2021) Respiratory coupling between prefrontal cortex and hippocampus of rats anaesthetized with urethane in theta and non-theta states. Eur J Neurosci 54:5507–5517

    Article  Google Scholar 

  75. Mofleh R, Kocsis B (2021) Delta-range coupling between prefrontal cortex and hippocampus supported by respiratory rhythmic input from the olfactory bulb in freely behaving rats. Sci Rep 11:1–11

    Article  Google Scholar 

  76. Neville KR, Haberly LB (2003) Beta and gamma oscillations in the olfactory system of the urethane-anesthetized rat. J Neurophysiol 90:3921–3930. https://doi.org/10.1152/jn.00475.2003

    Article  Google Scholar 

  77. Nguyen Chi V, Müller C, Wolfenstetter T, Yanovsky Y, Draguhn A, Tort ABL, Brankačk J (2016) Hippocampal respiration-driven rhythm distinct from theta oscillations in awake mice. J Neurosci Off J Soc Neurosci 36:162–177. https://doi.org/10.1523/JNEUROSCI.2848-15.2016

    Article  Google Scholar 

  78. Nobis WP, Otárula KAG, Templer JW, Gerard EE, VanHaerents S, Lane G, Zhou G, Rosenow JM, Zelano C, Schuele S (2019) The effect of seizure spread to the amygdala on respiration and onset of ictal central apnea. J Neurosurg 132:1313–1323

    Article  Google Scholar 

  79. Noble DJ, Hochman S (2019) Hypothesis: pulmonary afferent activity patterns during slow, deep breathing contribute to the neural induction of physiological relaxation. Front Physiol 10:1176. https://doi.org/10.3389/fphys.2019.01176

    Article  Google Scholar 

  80. Onoda N, Mori K (1980) Depth distribution of temporal firing patterns in olfactory bulb related to air-intake cycles. J Neurophysiol 44:29–39

    Article  Google Scholar 

  81. Ospina MB, Bond K, Karkhaneh M, Tjosvold L, Vandermeer B, Liang Y, Bialy L, Hooton N, Buscemi N, Dryden DM, Klassen TP (2007) Meditation practices for health: state of the research. Evid Rep Technol Assess (Full Rep) (155):1–263

  82. Ottoson D (1955) Analysis of the electrical activity of the olfactory epithelium. Acta Physiol Scand Suppl 35:1–83

    Google Scholar 

  83. Pager J (1980) An efferent respiratory modulation demonstrated in the olfactory bulb of the rat. C R Seances Acad Sci D 290:251–254

    Google Scholar 

  84. Pager J (1981) Respiratory modulation of unit activity in the olfactory bulb of tracheotomized rats. Comptes Rendus Seances Acad Sci Ser III Sci Vie 293:835–838

    Google Scholar 

  85. Park Y-J, Park Y-B (2012) Clinical utility of paced breathing as a concentration meditation practice. Complement Ther Med 20:393–399

    Article  Google Scholar 

  86. Perl O, Ravia A, Rubinson M, Eisen A, Soroka T, Mor N, Secundo L, Sobel N (2019) Human non-olfactory cognition phase-locked with inhalation. Nat Hum Behav 3:501–512

    Article  Google Scholar 

  87. Phillips ME, Sachdev RN, Willhite DC, Shepherd GM (2012) Respiration drives network activity and modulates synaptic and circuit processing of lateral inhibition in the olfactory bulb. J Neurosci 32:85–98

    Article  Google Scholar 

  88. Piarulli A, Zaccaro A, Laurino M, Menicucci D, De Vito A, Bruschini L, Berrettini S, Bergamasco M, Laureys S, Gemignani A (2018) Ultra-slow mechanical stimulation of olfactory epithelium modulates consciousness by slowing cerebral rhythms in humans. Sci Rep 8:1–17

    Article  Google Scholar 

  89. Poo C, Isaacson JS (2009) Odor representations in olfactory cortex:“sparse” coding, global inhibition, and oscillations. Neuron 62:850–861

    Article  Google Scholar 

  90. Potter H, Chorover SL (1976) Response plasticity in hamster olfactory bulb: peripheral and central processes. Brain Res 116:417–429

    Article  Google Scholar 

  91. Ravel N, Pager J (1990) Respiratory patterning of the rat olfactory bulb unit activity: nasal versus tracheal breathing. Neurosci Lett 115:213–218

    Article  Google Scholar 

  92. Rhone AE, Kovach CK, Harmata GI, Sullivan AW, Tranel D, Ciliberto MA, Howard MA, Richerson GB, Steinschneider M, Wemmie JA, Dlouhy BJ (2020) A human amygdala site that inhibits respiration and elicits apnea in pediatric epilepsy. JCI Insight 5(6):e134852. https://doi.org/10.1172/jci.insight.134852

  93. Rojas-Líbano D, Wimmer del Solar J, Aguilar-Rivera M, Montefusco-Siegmund R, Maldonado PE (2018) Local cortical activity of distant brain areas can phase-lock to the olfactory bulb’s respiratory rhythm in the freely behaving rat. J Neurophysiol 120:960–972

    Article  Google Scholar 

  94. Salimi M, Javadi AH, Nazari M, Bamdad S, Tabasi F, Parsazadegan T, Ayene F, Karimian M, Gholami-Mahtaj L, Shadnia S, Jamaati H, Salimi A, Raoufy MR (2021) Nasal air puff promotes default mode network activity in mechanically ventilated comatose patients: a noninvasive brain stimulation approach. Neuromodulation S1094-7159(21)06412-6. https://doi.org/10.1016/j.neurom.2021.11.003

  95. Sobel N, Prabhakaran V, Desmond JE, Glover GH, Goode RL, Sullivan EV, Gabrieli JD (1998) Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature 392:282–286

    Article  Google Scholar 

  96. Swanson LW, Petrovich GD (1998) What is the amygdala? Trends Neurosci 21:323–331

    Article  Google Scholar 

  97. Tort ABL, Ponsel S, Jessberger J, Yanovsky Y, Brankačk J, Draguhn A (2018) Parallel detection of theta and respiration-coupled oscillations throughout the mouse brain. Sci Rep 8:6432. https://doi.org/10.1038/s41598-018-24629-z

    Article  Google Scholar 

  98. Tsanov M, Chah E, Reilly R, O’Mara SM (2014) Respiratory cycle entrainment of septal neurons mediates the fast coupling of sniffing rate and hippocampal theta rhythm. Eur J Neurosci 39:957–974. https://doi.org/10.1111/ejn.12449

    Article  Google Scholar 

  99. Ueki S, Domino EF (1961) Some evidence for a mechanical receptor in olfactory function. J Neurophysiol 24:12–25

    Article  Google Scholar 

  100. Vanderwolf CH (1992) Hippocampal activity, olfaction, and sniffing: an olfactory input to the dentate gyrus. Brain Res 593:197–208

    Article  Google Scholar 

  101. Vanderwolf CH (2001) The hippocampus as an olfacto-motor mechanism: were the classical anatomists right after all? Behav Brain Res 127:25–47

    Article  Google Scholar 

  102. Viczko J, Sharma AV, Pagliardini S, Wolansky T, Dickson CT (2014) Lack of respiratory coupling with neocortical and hippocampal slow oscillations. J Neurosci 34:3937–3946

    Article  Google Scholar 

  103. Walsh RR (1956) Single cell spike activity in the olfactory bulb. Am J Physiol-Leg Content 186:255–257

    Article  Google Scholar 

  104. Wilson DA (1998) Habituation of odor responses in the rat anterior piriform cortex. J Neurophysiol 79:1425–1440

    Article  Google Scholar 

  105. Wu R, Liu Y, Wang L, Li B, Xu F (2017) Activity patterns elicited by airflow in the olfactory bulb and their possible functions. J Neurosci 37:10700–10711

    Article  Google Scholar 

  106. Yackle K, Schwarz LA, Kam K, Sorokin JM, Huguenard JR, Feldman JL, Luo L, Krasnow MA (2017) Breathing control center neurons that promote arousal in mice. Science 355:1411–1415

    Article  Google Scholar 

  107. Yanovsky Y, Ciatipis M, Draguhn A, Tort AB, Brankačk J (2014) Slow oscillations in the mouse hippocampus entrained by nasal respiration. J Neurosci 34:5949–5964

    Article  Google Scholar 

  108. Yu X, Fumoto M, Nakatani Y, Sekiyama T, Kikuchi H, Seki Y, Sato-Suzuki I, Arita H (2011) Activation of the anterior prefrontal cortex and serotonergic system is associated with improvements in mood and EEG changes induced by Zen meditation practice in novices. Int J Psychophysiol 80:103–111

    Article  Google Scholar 

  109. Zelano C, Jiang H, Zhou G, Arora N, Schuele S, Rosenow J, Gottfried JA (2016) Nasal respiration entrains human limbic oscillations and modulates cognitive function. J Neurosci 36:12448–12467

    Article  Google Scholar 

  110. Zhong W, Ciatipis M, Wolfenstetter T, Jessberger J, Müller C, Ponsel S, Yanovsky Y, Brankačk J, Tort AB, Draguhn A (2017) Selective entrainment of gamma subbands by different slow network oscillations. Proc Natl Acad Sci 114:4519–4524

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Buonviso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the special issue on Embodied Brain in Pflügers Archiv—European Journal of Physiology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juventin, M., Ghibaudo, V., Granget, J. et al. Respiratory influence on brain dynamics: the preponderant role of the nasal pathway and deep slow regime. Pflugers Arch - Eur J Physiol 475, 23–35 (2023). https://doi.org/10.1007/s00424-022-02722-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-022-02722-7

Keywords

Navigation