Skip to main content

Advertisement

Log in

Interleukin 17A infusion has no acute or long-term hypertensive action in conscious unrestrained male mice

  • Integrative physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Interleukin 17A (IL-17A) is a candidate mediator of inflammation-driven hypertension, but its direct effect on blood pressure is obscure. The present study was designed to test the hypothesis that systemic IL-17A concentration-dependently increases blood pressure and amplifies ANGII-induced hypertension in mice. Blood pressure was measured by indwelling chronic femoral catheters before and during IL-17A infusion w/wo angiotensin II (ANGII, 60ng/kg/min) in male FVB/n mice. Baseline blood pressure was recorded, and three experimental series were conducted: (1) IL-17A infusion with increasing concentrations over 6 days (two series with IL-17A from two vendors, n = 11); (2) ANGII infusion with IL-17A or vehicle for 9 days (n = 11); and (3) acute bolus infusions with four different concentrations (n = 5). Plasma IL-17A and IL-6 concentrations were determined by ELISA. Mean arterial and systolic blood pressures (MAP, SBP) decreased significantly after IL-17A infusion while heart rate was unchanged. In these mice, plasma IL-17A and IL-6 concentrations increased up to 3500- and 2.4-fold, respectively, above baseline. ANGII infusion increased MAP (~ 25 mmHg) and co-infusion of IL-17A attenuated ANGII-induced hypertension by 4.0 mmHg. Here, plasma IL-17A increased 350-fold above baseline. Acute IL-17A bolus infusion did not change blood pressure or heart rate. IL-17A receptor and IL-6 mRNAs were detected in aorta, heart, and kidneys of mice after IL-17A infusion. Nonphysiologically high concentrations of IL-17A reduce baseline blood pressure and increase IL-6 formation in male FVB/n mice. It is concluded that IL-17A is less likely to drive hypertension as the sole cytokine mediator during inflammation in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amador CA et al (2014) Spironolactone decreases DOCA-salt-induced organ damage by blocking the activation of T helper 17 and the downregulation of regulatory T lymphocytes. Hypertension 63(4):797–803. https://doi.org/10.1161/HYPERTENSIONAHA.113.02883

    Article  CAS  PubMed  Google Scholar 

  2. Andersen H et al (2020) Plasminogen deficiency and amiloride mitigate angiotensin II-induced hypertension in type 1 diabetic mice suggesting effects through the epithelial sodium channel. J Am Heart Assoc 9(23):e016387. https://doi.org/10.1161/JAHA.120.016387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Balanescu P et al (2015) IL-17, IL-6 and IFN-gamma in systemic sclerosis patients. Rom J Intern Med 53(1):44–49. https://doi.org/10.1515/rjim-2015-0006

    Article  CAS  PubMed  Google Scholar 

  4. Barbaro NR et al (2017) Dendritic cell amiloride-sensitive channels mediate sodium-induced inflammation and hypertension. Cell Rep 21(4):1009–1020. https://doi.org/10.1016/j.celrep.2017.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blauvelt A, Chiricozzi A (2018) The immunologic role of IL-17 in psoriasis and psoriatic arthritis pathogenesiS. Clin Rev Allergy Immunol 55(3):379–390. https://doi.org/10.1007/s12016-018-8702-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boesen EI, Pollock DM (2007) Effect of chronic IL-6 infusion on acute pressor responses to vasoconstrictors in mice. Am J Physiol Heart Circ Physiol 293(3):H1745–H1749. https://doi.org/10.1152/ajpheart.00329.2007

    Article  CAS  PubMed  Google Scholar 

  7. Brosnihan KB et al (1997) Estrogen protects transgenic hypertensive rats by shifting the vasoconstrictor-vasodilator balance of RAS. Am J Physiol 273(6):R1908–R1915. https://doi.org/10.1152/ajpregu.1997.273.6.R1908

    Article  CAS  PubMed  Google Scholar 

  8. Camporeale A, Poli V (2012) IL-6, IL-17 and STAT3: a holy trinity in auto-immunity? Front Biosci (Landmark Ed) 17:2306–2326. https://doi.org/10.2741/4054

    Article  CAS  Google Scholar 

  9. Chen YF (1996) Sexual dimorphism of hypertension. Curr Opin Nephrol Hypertens 5(2):181–185. https://doi.org/10.1097/00041552-199603000-00015

    Article  CAS  PubMed  Google Scholar 

  10. Chiricozzi A et al (2011) Integrative responses to IL-17 and TNF-alpha in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J Invest Dermatol 131(3):677–687. https://doi.org/10.1038/jid.2010.340

    Article  CAS  PubMed  Google Scholar 

  11. Cholewa BC, Mattson DL (2001) Role of the renin-angiotensin system during alterations of sodium intake in conscious mice. Am J Physiol Regul Integr Comp Physiol 281(3):R987–R993. https://doi.org/10.1152/ajpregu.2001.281.3.R987

    Article  CAS  PubMed  Google Scholar 

  12. Cholewa BC, Meister CJ, Mattson DL (2005) Importance of the renin-angiotensin system in the regulation of arterial blood pressure in conscious mice and rats. Acta Physiol Scand 183(3):309–320. https://doi.org/10.1111/j.1365-201X.2004.01401.x

    Article  CAS  PubMed  Google Scholar 

  13. Cornelius DC et al (2013) Administration of interleukin-17 soluble receptor C suppresses TH17 cells, oxidative stress, and hypertension in response to placental ischemia during pregnancy. Hypertension 62(6):1068–1073. https://doi.org/10.1161/HYPERTENSIONAHA.113.01514

    Article  CAS  PubMed  Google Scholar 

  14. Crowley SD et al (2010) Lymphocyte responses exacerbate angiotensin II-dependent hypertension. Am J Physiol Regul Integr Comp Physiol 298(4):R1089–R1097. https://doi.org/10.1152/ajpregu.00373.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. De Miguel C et al (2010) T lymphocytes mediate hypertension and kidney damage in Dahl salt-sensitive rats. Am J Physiol Regul Integr Comp Physiol 298(4):R1136–R1142. https://doi.org/10.1152/ajpregu.00298.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Miguel C et al (2011) Infiltrating T lymphocytes in the kidney increase oxidative stress and participate in the development of hypertension and renal disease. Am J Physiol Renal Physiol 300(3):F734–F742. https://doi.org/10.1152/ajprenal.00454.2010

    Article  CAS  PubMed  Google Scholar 

  17. Dhillion P et al (2012) IL-17-mediated oxidative stress is an important stimulator of AT1-AA and hypertension during pregnancy. Am J Physiol Regul Integr Comp Physiol 303(4):R353–R358. https://doi.org/10.1152/ajpregu.00051.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dimayuga PC et al (2011) Enhanced neointima formation following arterial injury in immune deficient Rag-1-/- mice is attenuated by adoptive transfer of CD8 T cells. PLoS ONE 6(5):e20214. https://doi.org/10.1371/journal.pone.0020214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Drueke TB, Devuyst O (2019) Blood pressure measurement in mice: tail-cuff or telemetry? Kidney Int 96(1):36. https://doi.org/10.1016/j.kint.2019.01.018

    Article  PubMed  Google Scholar 

  20. Guzik TJ et al (2007) Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 204(10):2449–2460. https://doi.org/10.1084/jem.20070657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hartner A et al (2003) Strain differences in the development of hypertension and glomerular lesions induced by deoxycorticosterone acetate salt in mice. Nephrol Dial Transplant 18(10):1999–2004. https://doi.org/10.1093/ndt/gfg299

    Article  CAS  PubMed  Google Scholar 

  22. Hashmat S et al (2016) Interleukin-6 inhibition attenuates hypertension and associated renal damage in Dahl salt-sensitive rats. Am J Physiol Renal Physiol 311(3):F555–F561. https://doi.org/10.1152/ajprenal.00594.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hristovska AM et al (2007) Prostaglandin E2 induces vascular relaxation by E-prostanoid 4 receptor-mediated activation of endothelial nitric oxide synthase. Hypertension 50(3):525–530. https://doi.org/10.1161/HYPERTENSIONAHA.107.088948

    Article  CAS  PubMed  Google Scholar 

  24. Hwang SY et al (2004) IL-17 induces production of IL-6 and IL-8 in rheumatoid arthritis synovial fibroblasts via NF-kappaB- and PI3-kinase/Akt-dependent pathways. Arthritis Res Ther 6(2):R120–R128. https://doi.org/10.1186/ar1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ji H et al (2017) Loss of resistance to angiotensin II-induced hypertension in the Jackson Laboratory recombination-activating gene null mouse on the C57BL/6J background. Hypertension 69(6):1121–1127. https://doi.org/10.1161/HYPERTENSIONAHA.117.09063

    Article  CAS  PubMed  Google Scholar 

  26. Ji Q et al (2017) Circulating Th1, Th2, and Th17 levels in hypertensive patients. Dis Markers 2017:7146290. https://doi.org/10.1155/2017/7146290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ju X et al (2013) Interleukin-6-signal transducer and activator of transcription-3 signaling mediates aortic dissections induced by angiotensin II via the T-helper lymphocyte 17-interleukin 17 axis in C57BL/6 mice. Arterioscler Thromb Vasc Biol 33(7):1612–1621. https://doi.org/10.1161/ATVBAHA.112.301049

    Article  CAS  PubMed  Google Scholar 

  28. Justice MJ, Dhillon P (2016) Using the mouse to model human disease: increasing validity and reproducibility. Dis Model Mech 9(2):101–103. https://doi.org/10.1242/dmm.024547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kamat NV et al (2015) Renal transporter activation during angiotensin-II hypertension is blunted in interferon-gamma-/- and interleukin-17A-/- mice. Hypertension 65(3):569–576. https://doi.org/10.1161/HYPERTENSIONAHA.114.04975

    Article  CAS  PubMed  Google Scholar 

  30. Karbach S et al (2014) Interleukin 17 drives vascular inflammation, endothelial dysfunction, and arterial hypertension in psoriasis-like skin disease. Arterioscler Thromb Vasc Biol 34(12):2658–2668. https://doi.org/10.1161/ATVBAHA.114.304108

    Article  CAS  PubMed  Google Scholar 

  31. Krebs CF et al (2014) Deficiency of the interleukin 17/23 axis accelerates renal injury in mice with deoxycorticosterone acetate+angiotensin ii-induced hypertension. Hypertension 63(3):565–571. https://doi.org/10.1161/HYPERTENSIONAHA.113.02620

    Article  CAS  PubMed  Google Scholar 

  32. Kurtz TW et al (2005) Recommendations for blood pressure measurement in humans and experimental animals: part 2: blood pressure measurement in experimental animals: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Arterioscler Thromb Vasc Biol 25(3):e22–e33. https://doi.org/10.1161/01.ATV.0000158419.98675.d7

    Article  CAS  PubMed  Google Scholar 

  33. Lautrette A et al (2005) Angiotensin II and EGF receptor cross-talk in chronic kidney diseases: a new therapeutic approach. Nat Med 11(8):867–874. https://doi.org/10.1038/nm1275

  34. Luther JM et al (2006) Angiotensin II induces interleukin-6 in humans through a mineralocorticoid receptor-dependent mechanism. Hypertension 48(6):1050–1057. https://doi.org/10.1161/01.HYP.0000248135.97380.76

    Article  CAS  PubMed  Google Scholar 

  35. Madhur MS et al (2010) Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension 55(2):500–507. https://doi.org/10.1161/HYPERTENSIONAHA.109.145094

    Article  CAS  PubMed  Google Scholar 

  36. Malyala P, Singh M (2008) Endotoxin limits in formulations for preclinical research. J Pharm Sci 97(6):2041–2044. https://doi.org/10.1002/jps.21152

    Article  CAS  PubMed  Google Scholar 

  37. Marko L et al (2012) Interferon-gamma signaling inhibition ameliorates angiotensin II-induced cardiac damage. Hypertension 60(6):1430–1436. https://doi.org/10.1161/HYPERTENSIONAHA.112.199265

    Article  CAS  PubMed  Google Scholar 

  38. Mattson DL (1998) Long-term measurement of arterial blood pressure in conscious mice. Am J Physiol 274(2):R564–R570. https://doi.org/10.1152/ajpregu.1998.274.2.R564

    Article  CAS  PubMed  Google Scholar 

  39. Monguio-Tortajada M et al (2018) Low doses of LPS exacerbate the inflammatory response and trigger death on TLR3-primed human monocytes. Cell Death Dis 9(5):499. https://doi.org/10.1038/s41419-018-0520-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nguyen H et al (2013) Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction and hypertension. Cardiovasc Res 97(4):696–704. https://doi.org/10.1093/cvr/cvs422

    Article  CAS  PubMed  Google Scholar 

  41. Nordlohne J et al (2018) Aggravated atherosclerosis and vascular inflammation with reduced kidney function depend on interleukin-17 receptor A and are normalized by inhibition of interleukin-17A. JACC Basic Transl Sci 3(1):54–66. https://doi.org/10.1016/j.jacbts.2017.08.005

    Article  PubMed  PubMed Central  Google Scholar 

  42. Norlander AE et al (2016) Interleukin-17A regulates renal sodium transporters and renal injury in angiotensin II-induced hypertension. Hypertension 68(1):167–174. https://doi.org/10.1161/HYPERTENSIONAHA.116.07493

    Article  CAS  PubMed  Google Scholar 

  43. Olsen F (1980) Transfer of arterial hypertension by splenic cells from DOCA-salt hypertensive and renal hypertensive rats to normotensive recipients. Acta Pathol Microbiol Scand C 88(1):1–5

    CAS  PubMed  Google Scholar 

  44. Orejudo M et al (2019) Interleukin 17A participates in renal inflammation associated to experimental and human hypertension. Front Pharmacol 10:1015. https://doi.org/10.3389/fphar.2019.01015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Orejudo M et al (2020) Interleukin-17A induces vascular remodeling of small arteries and blood pressure elevation. Clin Sci (Lond) 134(5):513–527. https://doi.org/10.1042/CS20190682

    Article  CAS  Google Scholar 

  46. Qi Z et al (2005) Characterization of susceptibility of inbred mouse strains to diabetic nephropathy. Diabetes 54(9):2628–2637. https://doi.org/10.2337/diabetes.54.9.2628

    Article  CAS  PubMed  Google Scholar 

  47. Rowland NE, Fregly MJ (1992) Role of gonadal hormones in hypertension in the Dahl salt-sensitive rat. Clin Exp Hypertens A 14(3):367–375. https://doi.org/10.3109/10641969209036195

    Article  CAS  PubMed  Google Scholar 

  48. Saleh MA, Norlander AE, Madhur MS (2016) Inhibition of interleukin 17-A but not interleukin-17F signaling lowers blood pressure and reduces end-organ inflammation in angiotensin II-induced hypertension. JACC Basic Transl Sci 1(7):606–616. https://doi.org/10.1016/j.jacbts.2016.07.009

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schuler R et al (2019) T cell-derived IL-17A induces vascular dysfunction via perivascular fibrosis formation and dysregulation of (.)NO/cGMP signaling. Oxid Med Cell Longev 2019:6721531. https://doi.org/10.1155/2019/6721531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Seniuk A et al (2020) B6.Rag1 knockout mice generated at the Jackson Laboratory in 2009 show a robust wild-type hypertensive phenotype in response to Ang II (angiotensin II). Hypertension 75(4):1110–1116. https://doi.org/10.1161/HYPERTENSIONAHA.119.13773

    Article  CAS  PubMed  Google Scholar 

  51. Simundic T et al (2017) Interleukin 17A and toll-like receptor 4 in patients with arterial hypertension. Kidney Blood Press Res 42(1):99–108. https://doi.org/10.1159/000471900

    Article  CAS  PubMed  Google Scholar 

  52. Steensberg A et al (2003) IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab 285(2):E433–E437. https://doi.org/10.1152/ajpendo.00074.2003

    Article  CAS  PubMed  Google Scholar 

  53. Sturgis LC et al (2009) The role of aldosterone in mediating the dependence of angiotensin hypertension on IL-6. Am J Physiol Regul Integr Comp Physiol 297(6):R1742–R1748. https://doi.org/10.1152/ajpregu.90995.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Svendsen UG (1976) Evidence for an initial, thymus independent and a chronic, thymus dependent phase of DOCA and salt hypertension in mice. Acta Pathol Microbiol Scand A 84(6):523–528. https://doi.org/10.1111/j.1699-0463.1976.tb00150.x

    Article  CAS  PubMed  Google Scholar 

  55. Thuesen AD et al (2019) Deficiency of T-type Ca(2+) channels Cav3.1 and Cav3.2 has no effect on angiotensin II-induced hypertension but differential effect on plasma aldosterone in mice. Am J Physiol Renal Physiol 317(2):F254–F263. https://doi.org/10.1152/ajprenal.00121.2018

    Article  CAS  PubMed  Google Scholar 

  56. Travis OK et al (2019) Chronic infusion of interleukin-17 promotes hypertension, activation of cytolytic natural killer cells, and vascular dysfunction in pregnant rats. Physiol Rep 7(7):e14038. https://doi.org/10.14814/phy2.14038

    Article  PubMed  PubMed Central  Google Scholar 

  57. Uchida HA et al (2010) Total lymphocyte deficiency attenuates AngII-induced atherosclerosis in males but not abdominal aortic aneurysms in apoE deficient mice. Atherosclerosis 211(2):399–403. https://doi.org/10.1016/j.atherosclerosis.2010.02.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Veldhoen M et al (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24(2):179–189. https://doi.org/10.1016/j.immuni.2006.01.001

    Article  CAS  PubMed  Google Scholar 

  59. Wedell-Neergaard AS et al (2019) Exercise-induced changes in visceral adipose tissue mass are regulated by IL-6 signaling: a randomized controlled trial. Cell Metab 29(4):844–855 e3. https://doi.org/10.1016/j.cmet.2018.12.007

    Article  CAS  PubMed  Google Scholar 

  60. Widder JD et al (2007) Role of the multidrug resistance protein-1 in hypertension and vascular dysfunction caused by angiotensin II. Arterioscler Thromb Vasc Biol 27(4):762–768. https://doi.org/10.1161/01.ATV.0000259298.11129.a2

    Article  CAS  PubMed  Google Scholar 

  61. Wilck N et al (2017) Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551(7682):585–589. https://doi.org/10.1038/nature24628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank laboratory technician Jesper Kingo Andresen for excellent assistance with measuring plasma IL-17A and IL-6.

Funding

The study was supported by the A.P. Møller Foundation, The Novo Nordisk Foundation, Independent Research Fund Denmark, Karen Elise Jensen Foundation, and Augustinus Foundation.

Author information

Authors and Affiliations

Authors

Contributions

BLJ and SST conceived the idea and designed the animal experiments; SST and CE conducted animal and laboratory experiments and analyzed the data; SST, BLJ, JS, PS, YP, and PBLH interpreted results and experiments; SST prepared figures; SST and BLJ have drafted the manuscript. All the authors revised the manuscript and approved for final submission.

Corresponding author

Correspondence to Boye L. Jensen.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest. PBL Hansen is an employee and shareholder at AstraZeneca.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 21.8 kb)

ESM 2

(PDF 2.78 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thangaraj, S.S., Enggaard, C., Stubbe, J. et al. Interleukin 17A infusion has no acute or long-term hypertensive action in conscious unrestrained male mice. Pflugers Arch - Eur J Physiol 474, 709–719 (2022). https://doi.org/10.1007/s00424-022-02705-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-022-02705-8

Keywords

Navigation