Skip to main content

Advertisement

Log in

TRPM4 non-selective cation channel in human atrial fibroblast growth

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Cardiac fibroblasts play an important role in cardiac matrix turnover and are involved in cardiac fibrosis development. Ca2+ is a driving belt in this phenomenon. This study evaluates the functional expression and contribution of the Ca2+-activated channel TRPM4 in atrial fibroblast phenotype. Molecular and electrophysiological investigations were conducted in human atrial fibroblasts in primary culture and in atrial fibroblasts obtained from wild-type and transgenic mice with disrupted Trpm4 gene (Trpm4−/−). A typical TRPM4 current was recorded on human cells (equal selectivity for Na+ and K+, activation by internal Ca2+, voltage sensitivity, conductance of 23.2 pS, inhibition by 9-phenanthrol (IC50 = 6.1 × 10−6 mol L−1)). Its detection rate was 13% on patches at days 2–4 in culture but raised to 100% on patches at day 28. By the same time, a cell growth was observed. This growth was smaller when cells were maintained in the presence of 9-phenanthrol. Similar cell growth was measured on wild-type mice atrial fibroblasts during culture. However, this growth was minimized on Trpm4−/− mice fibroblasts compared to control animals. In addition, the expression of alpha smooth muscle actin increased during culture of atrial fibroblasts from wild-type mice. This was not observed in Trpm4−/− mice fibroblasts. It is concluded that TRPM4 participates in fibroblast growth and could thus be involved in cardiac fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The dataset generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Adapala RK, Thoppil RJ, Luther DJ, Paruchuri S, Meszaros JG, Chilian WM, Thodeti CK (2013) TRPV4 channels mediate cardiac fibroblast differentiation by integrating mechanical and soluble signals. J Mol Cell Cardiol 54:45–52

    CAS  PubMed  Google Scholar 

  2. Barbet G, Demion M, Moura IC, Serafini N, Léger T, Vrtovsnik F, Monteiro RC, Guinamard R, Kinet JP, Launay P (2008) The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nat Immunol 9:1148–1156

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bers DM, Patton CW, Nuccitelli R (2010) A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol 99:1–26

    CAS  PubMed  Google Scholar 

  4. Bianchi B, Ozhathil LC, Medeiros-Domingo A, Gollob MH, Abriel H (2018) Four TRPM4 cation channel mutations found in cardiac conduction diseases lead to altered protein stability. Front Physiol 9:177

    PubMed  PubMed Central  Google Scholar 

  5. Burris SK, Wang Q, Bulley S, Neeb ZP, Jaggar JH (2015) 9-Phenanthrol inhibits recombinant and arterial myocyte TMEM16A channels. Br J Pharmacol 172:2459–2468

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Burstein B, Libby E, Calderone A, Nattel S (2008) Differential behaviors of atrial versus ventricular fibroblasts: a potential role for platelet-derived growth factor in atrial-ventricular remodeling differences. Circulation 117:1630–1641

    PubMed  Google Scholar 

  7. Chacar S, Farès N, Bois P, Faivre JF (2017) Basic signaling in cardiac fibroblasts. J Cell Physiol 232:725–730

    CAS  PubMed  Google Scholar 

  8. Chatelier A, Mercier A, Tremblier B, Thériault O, Moubarak M, Benamer N, Corbi P, Bois P, Chahine M, Faivre JF (2012) A distinct de novo expression of Nav1.5 sodium channels in human atrial fibroblasts differentiated into myofibroblasts. J Physiol 590:4307–4319

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cho CH, Kim E, Lee YS, Yarishkin O, Yoo JC, Park JY, Hong SG, Hwang EM (2014) Depletion of 14-3-3γ reduces the surface expression of transient receptor potential melastatin 4b (TRPM4b) channels and attenuates TRPM4b-mediated glutamate-induced neuronal cell death. Mol Brain 7:52

    PubMed  PubMed Central  Google Scholar 

  10. Demion M, Bois P, Launay P, Guinamard R (2007) TRPM4, a Ca2+-activated nonselective cation channel in mouse sino-atrial node cells. Cardiovasc Res 73:531–538

    CAS  PubMed  Google Scholar 

  11. Demion M, Thireau J, Gueffier M, Finan A, Khoueiry Z, Cassan C, Serafini N, Aimond F, Granier M, Pasquié JL, Launay P, Richard S (2014) Trpm4 gene invalidation leads to cardiac hypertrophy and electrophysiological alterations. PLoS One 9:e115256

    PubMed  PubMed Central  Google Scholar 

  12. Ding XQ, Ban T, Liu ZY, Lou J, Tang LL, Wang JX, Chu WF, Zhao D, Song BL, Zhang ZR (2017) Transient receptor potential melastatin 4 (TRPM4) contributes to high salt diet-mediated early-stage endothelial injury. Cell Physiol Biochem 41:835–848

    CAS  PubMed  Google Scholar 

  13. Du J, Xie J, Zhang Z, Tsujikawa H, Fusco D, Silverman D, Liang B, Yue L (2010) TRPM7-mediated Ca2+ signals confer fibrogenesis in human atrial fibrillation. Circ Res 106:992–1003

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Echeverría C, Montorfano I, Cabello-Verrugio C, Armisén R, Varela D, Simon F (2015) Suppression of transient receptor potential melastatin 4 expression promotes conversion of endothelial cells into fibroblasts via transforming growth factor/activin receptor-like kinase 5 pathway. J Hypertens 33:981–992

    PubMed  Google Scholar 

  15. El Chemaly A, Guinamard R, Demion M, Fares N, Jebara V, Faivre JF, Bois P (2006) A voltage-activated proton current in human cardiac fibroblasts. Biochem Biophys Res Commun 340:512–516

    PubMed  Google Scholar 

  16. El Chemaly A, Norez C, Magaud C, Bescond J, Chatelier A, Fares N, Findlay I, Jayle C, Becq F, Faivre JF, Bois P (2014) ANO1 contributes to angiotensin-II-activated Ca2+-dependent Cl- current in human atrial fibroblasts. J Mol Cell Cardiol 68:12–19

    PubMed  Google Scholar 

  17. Farès N, Bois P, Lenfant J, Potreau D (1998) Characterization of a hyperpolarization-activated current in dedifferentiated adult rat ventricular cells in primary culture. J Physiol 506:73–82

    PubMed  PubMed Central  Google Scholar 

  18. Feng J, Armillei MK, Yu AS, Liang BT, Runnels LW, Yue L (2019) Ca2+ signaling in cardiac fibroblasts and fibrosis-associated heart diseases. J Cardiovasc Dev Dis 6:34

    CAS  PubMed Central  Google Scholar 

  19. Gonzales AL, Garcia ZI, Amberg GC, Earley S (2010) Pharmacological inhibition of TRPM4 hyperpolarizes vascular smooth muscle. J Cardiovasc Dev Dis 299:1195–1202

    Google Scholar 

  20. Grand T, Demion M, Norez C, Mettey Y, Launay P, Becq F, Bois P, Guinamard R (2008) Br J Pharmacol 153:697–1705

    Google Scholar 

  21. Gueffier M, Zintz J, Lambert K, Finan A, Aimond F, Chakouri N, Hédon C, Granier M, Launay P, Thireau J, Richard S, Demion M (2017) The TRPM4 channel is functionally important for the beneficial cardiac remodeling induced by endurance training. J Muscle Res Cell Motil 38:3–16

    CAS  PubMed  Google Scholar 

  22. Guinamard R, Rahmati M, Lenfant J, Bois P (2002) Characterization of a Ca2+-activated nonselective cation channel during dedifferentiation of cultured rat ventricular cardiomyocytes. J Membr Biol 188:127–135

    CAS  PubMed  Google Scholar 

  23. Guinamard R, Chatelier A, Demion M, Potreau D, Patri S, Rahmati M, Bois P (2004) Functional characterization of a Ca(2+)-activated non-selective cation channel in human atrial cardiomyocytes. J Physiol 558:75–83

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Guinamard R, Sallé L, Simard C (2011) The non-selective monovalent cationic channels TRPM4 and TRPM5. Adv Exp Med Biol 704:147–171

    CAS  PubMed  Google Scholar 

  25. Guinamard R, Hof T, Del Negro CA (2014) The TRPM4 channel inhibitor 9-phenanthrol. Br J Pharmacol 171:1600–1613

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Guinamard R, Bouvagnet P, Hof T, Liu H, Simard C, Sallé L (2015) TRPM4 in cardiac electrical activity. Cardiovasc Res 108:21–30

    CAS  PubMed  Google Scholar 

  27. Harada M, Luo X, Qi XY, Tadevosyan A, Maguy A, Ordog B, Ledoux J, Kato T, Naud P, Voigt N, Shi Y, Kamiya K, Murohara T, Kodama I, Tardif JC, Schotten U, Van Wagoner DR, Dobrev D, Nattel S (2012) Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation. Circulation 126:2051–2064

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hartmann AK, Aranda Lopez P, Zajac M, Freichel M, Schild H, Radsak MP, Stassen M (2017) 9-Phenanthrol enhances the generation of an CD8+ T cell response following transcutaneous immunization with imiquimod in mice. J Dermatol Sci 87:260–267

    CAS  PubMed  Google Scholar 

  29. Hof T, Simard C, Rouet R, Sallé L, Guinamard R (2013) Implication of the TRPM4 non-selective cation channel in mammalian sinus rhythm. Heart Rhythm 10:1683–1689

    PubMed  Google Scholar 

  30. Hof T, Sallé L, Coulbault L, Richer R, Alexandre J, Rouet R, Manrique A, Guinamard R (2016) TRPM4 non-selective cation channels influence action potentials in rabbit Purkinje fibres. J Physiol 594:295–306

    CAS  PubMed  Google Scholar 

  31. Inoue R, Kurahara LH, Hiraishi K (2019) TRP channels in cardiac and intestinal fibrosis. Semin Cell Dev Biol 94:40–49

    CAS  PubMed  Google Scholar 

  32. Kecskés M, Jacobs G, Kerselaers S, Syam N, Menigoz A, Vangheluwe P, Freichel M, Flockerzi V, Voets T, Vennekens R (2015) The Ca(2+)-activated cation channel TRPM4 is a negative regulator of angiotensin II-induced cardiac hypertrophy. Basic Res Cardiol 110:43

    PubMed  PubMed Central  Google Scholar 

  33. Kim BJ, Kim SY, Lee S, Jeon JH, Matsui H, Kwon YK, Kim SJ, So I (2012) The role of transient receptor potential channel blockers in human gastric cancer cell viability. Canadian J Physiol Pharmacol 90:175–186

    CAS  Google Scholar 

  34. Klesen A, Jakob D, Emig R, Kohl P, Ravens U, Peyronnet R (2018) Cardiac fibroblasts: active players in (atrial) electrophysiology? Herzschrittmachertherapie Elektrophysiol 29:62–69

    Google Scholar 

  35. Koivumäki JT, Clark RB, Belke D, Kondo C, Fedak PW, Maleckar MM, Giles WR (2014) Na(+) current expression in human atrial myofibroblasts: identity and functional roles. Front Physiol 5:275

    PubMed  PubMed Central  Google Scholar 

  36. Kovacic JC, Dimmeler S, Harvey RP, Finkel T, Aikawa E, Krenning G, Baker AH (2019) Endothelial to mesenchymal transition in cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol 73:190–209

    PubMed  PubMed Central  Google Scholar 

  37. Kruse M, Pongs O (2014) TRPM4 channels in the cardiovascular system. Curr Opin Pharmacol 15:68–73

    CAS  PubMed  Google Scholar 

  38. Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP (2002) TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109:397–407

    CAS  PubMed  Google Scholar 

  39. Loh KP, Ng G, Yu CY, Fhu CK, Yu D, Vennekens R, Nilius B, Soong TW, Liao P (2014) TRPM4 inhibition promotes angiogenesis after ischemic stroke. Pflugers Arch 466:563–576

    CAS  PubMed  Google Scholar 

  40. Louault C, Benamer N, Faivre JF, Potreau D, Bescond J (2008) Implication of connexins 40 and 43 in functional coupling between mouse cardiac fibroblasts in primary culture. Biochim Biophys Acta 1778:2097–2104

    CAS  PubMed  Google Scholar 

  41. Mathar I, Jacobs G, Kecskes M, Menigoz A, Philippaert K, Vennekens R (2014a) Trpm4. Handb Exp Pharmacol 222:461–487

    CAS  PubMed  Google Scholar 

  42. Mathar I, Kecskes M, Van der Mieren G, Jacobs G, Camacho Londoño JE, Uhl S, Flockerzi V, Voets T, Freichel M, Nilius B, Herijgers P, Vennekens R (2014b) Increased β-adrenergic inotropy in ventricular myocardium from Trpm4-/- mice. Circ Res 114:283–294

    CAS  PubMed  Google Scholar 

  43. Meszaros JG, Gonzalez AM, Endo-Mochizuki Y, Villegas S, Villarreal F, Brunton LL (2000) Identification of G protein-coupled signaling pathways in cardiac fibroblasts: cross talk between G(q) and G(s). Am J Physiol Cell Physiol 278:C154–C162

    CAS  PubMed  Google Scholar 

  44. Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121:49–60

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Nakajima H, Nakajima HO, Salcher O, Dittiè AS, Dembowsky K, Jing S, Field LJ (2000) Atrial but not ventricular fibrosis in mice expressing a mutant transforming growth factor-beta(1) transgene in the heart. Circ Res 86:571–579

    CAS  PubMed  Google Scholar 

  46. Nelson P, Ngoc Tran TD, Zhang H, Zolochevska O, Figueiredo M, Feng JM, Gutierrez DL, Xiao R, Yao S, Penn A, Yang LJ, Cheng H (2013) Transient receptor potential melastatin 4 channel controls calcium signals and dental follicle stem cell differentiation. Stem Cells 31:167–177

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Nilius B, Prenen J, Droogmans G, Voets T, Vennekens R, Freichel M, Wissenbach U, Flockerzi V (2003) Voltage dependence of the Ca2+-activated cation channel TRPM4. J Biol Chem 278:30813–30820

    CAS  PubMed  Google Scholar 

  48. Pérez CA, Huang L, Rong M, Kozak JA, Preuss AK, Zhang H, Max M, Margolskee RF (2002) A transient receptor potential channel expressed in taste receptor cells. Nat Neurosci 5:1169–1176

    PubMed  Google Scholar 

  49. Poulet C, Künzel S, Büttner E, Lindner D, Westermann D, Ravens U (2016) Altered physiological functions and ion currents in atrial fibroblasts from patients with chronic atrial fibrillation. Physiol Rep 4:e12681

    PubMed  PubMed Central  Google Scholar 

  50. Rose RA, Hatano N, Ohya S, Imaizumi Y, Giles WR (2007) C-type natriuretic peptide activates a non-selective cation current in acutely isolated rat cardiac fibroblasts via natriuretic peptide C receptor-mediated signalling. J Physiol 580:255–274

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sagredo AI, Sagredo EA, Pola V, Echeverría C, Andaur R, Michea L, Stutzin A, Simon F, Marcelain K, Armisén R (2019) TRPM4 channel is involved in regulating epithelial to mesenchymal transition, migration, and invasion of prostate cancer cell lines. J Cell Physiol 234:2037–2050

    CAS  PubMed  Google Scholar 

  52. Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. Cell 114:191–200

    CAS  PubMed  Google Scholar 

  53. Simard C, Hof T, Keddache Z, Launay P, Guinamard R (2013) The TRPM4 non-selective cation channel contributes to the mammalian atrial action potential. J Mol Cell Cardiol 59:11–19

    CAS  PubMed  Google Scholar 

  54. Veress R, Baranyai D, Hegyi B, Kistamás K, Dienes C, Magyar J, Bányász P, Nánási PP, Szentandrássy N, Horváth B (2018) Transient receptor potential melastatin 4 channel inhibitor 9-phenanthrol inhibits K+ but not Ca2+ currents in canine ventricular myocytes. Can J Physiol Pharmacol 96:1022–1029

    CAS  PubMed  Google Scholar 

  55. Wang J, Takahashi K, Piao H, Qu P, Naruse K (2013) 9-Phenanthrol, a TRPM4 inhibitor, protects isolated rat hearts from ischemia-reperfusion injury. PLoS One 8:e70587

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yu Y, Chen S, Xiao C, Jia Y, Guo J, Jiang J, Liu P (2014) TRPM7 is involved in angiotensin II induced cardiac fibrosis development by mediating calcium and magnesium influx. Cell Calcium 55:252–260

    CAS  PubMed  Google Scholar 

  57. Yu CX, Zhang YY, Wu XY, Tang HX, Liang XQ, Xue ZM, Xue YD, Li J, Zhu H, Huo R, Ban T (2019) Transient receptor potential melastatin 4 contributes to early-stage endothelial injury induced by arsenic trioxide. Toxicol Lett 312:98–108

    CAS  PubMed  Google Scholar 

  58. Yue Z, Zhang Y, Xie J, Jiang J, Yue L (2013) Transient receptor potential (TRP) channels and cardiac fibrosis. Curr Top Med Chem 13:270–282

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang X, Zhang T, Wu J, Yu X, Zheng D, Yang F, Li T, Wang L, Zhao Y, Dong S, Zhong X, Fu S, Xu CQ, Lu F, Zhang WH (2014) Calcium sensing receptor promotes cardiac fibroblast proliferation and extracellular matrix secretion. Cell Physiol Biochem 33:557–568

    CAS  PubMed  Google Scholar 

  60. Zou ZG, Rios FJ, Montezano AC, Touyz RM (2019) TRPM7, magnesium, and signaling. Int J Mol Sci 20:1877

    CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Marie Demion (INSERM U1046, Montpellier, France) for providing the mouse strain used in this study and Claudine Combes for technical assistance in human fibroblast isolation experiments. They also thank Vladimir Saplacan, Dimitrios Buklas, Julien Desgue, and Gerard Babatasi, cardiac surgeons, CHU Caen.

Funding

This work was done with a financial support (RIN ENTRAC) of « Région Normandie », France. Christophe Simard received a fellowship from “Région Normandie,” France. This work was conducted as part of the FHU REMOD-VHF project.

Author information

Authors and Affiliations

Authors

Contributions

C. Simard, C. Magaud, and R. Adjlane were in charge of cell isolation and culture. C. Simard and R. Guinamard performed the single-channel patch-clamp recordings. C. Simard, C. Magaud, and Q. Dupas were in charge of the biochemical approaches. L. Sallé, A. Manrique, and P. Bois participated in data analysis and editing of the paper. C. Simard, C Magaud, JF. Faivre, and R. Guinamard were in charge of the design of the experiments and writing of the paper.

Corresponding author

Correspondence to Romain Guinamard.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Studies using human atrial appendages were made after the approval of local medical ethics committee (Comité de Protection des Personnes Nord Ouest III, Caen, France, ref.: DC-2013-1967) and patient written informed consent.

Experiments using mouse atrial cells were carried out in strict accordance with the European Commission Directive 2010/63/EU for animal care. The study was also conducted with authorization for animal experimentation #14-98 from the local DDPP (Direction Départementale de la Protection des Populations).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Figure 1.

Expression and localization of smooth muscle actin (α-SMA), CD31 and vimentin in primary culture of human cardiac fibroblasts. A. Expression of CD31 in human umbilical vein endothelial cell line (HUVEC) by immunolabeling. Left panel: omission of the primary antibody; Right panel: detection of CD31 in HUVEC cells. Cells were incubated for 2 h with the secondary antibody (1:250, chicken anti-mouse alexa 488, Thermo Fisher Scientific). B. Immunostaining experiments performed on primary culture of human atrial fibroblasts after 12 days in culture to characterize expression of α-SMA, CD31 (green channels) and vimentin (red channel). Upper panel: example of double immunofluorescence staining of α-SMA and vimentin in primary culture of human cardiac fibroblast. Lower panel: Example of double immunofluorescence staining of CD31 and vimentin in primary culture of human cardiac fibroblast. Note the absence of expression of the endothelial cell marker CD31. DAPI staining (blue) was used to mark the nuclei. Images were obtained using confocal microscopy; Bar = 100 μm. (PNG 193201 kb)

High Resolution (TIF 9790 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simard, C., Magaud, C., Adjlane, R. et al. TRPM4 non-selective cation channel in human atrial fibroblast growth. Pflugers Arch - Eur J Physiol 472, 1719–1732 (2020). https://doi.org/10.1007/s00424-020-02476-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02476-0

Keywords

Navigation