Skip to main content

Advertisement

Log in

Acute intracerebroventricular injection of chemerin-9 increases systemic blood pressure through activating sympathetic nerves via CMKLR1 in brain

  • Integrative physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Chemerin is an adipocytokine involved in inflammation and lipid metabolism via G protein-coupled receptor, chemokine-like receptor (CMKLR)1. Since the important nuclei regulating pressure (BP) exist in the brain, we examined the effects of acute intracerebroventricular (i.c.v.) injection of chemerin-9 on systemic BP and explored underlying mechanisms. We examined the effects of acute i.c.v. injection of chemerin-9 (10 nmol/head) on systemic BP by a carotid cannulation method in the control or CMKLR1 small interfering (si) RNA-treated Wistar rats (0.04 nmol, 3 days, i.c.v.). We examined protein expression of CMKLR1 around brain ventricles by Western blotting. We examined the effects of acute i.c.v. injection of chemerin-9 on serum adrenaline by a high performance liquid chromatography. In the control siRNA-treated rats, chemerin-9 significantly increased mean BP, which reached a peak at 2 to 4 min after injection. On the other hand, in the CMKLR1 siRNA-treated rats, chemerin-9 did not affect the mean BP. Protein expression of CMKLR1 specifically in subfornical organ (SFO) and paraventricular nucleus (PVN) from the CMKLR1 siRNA-treated rats decreased compared with the control siRNA-treated rats. In the control siRNA-treated rats, chemerin-9 increased serum adrenaline level. On the other hand, in the CMKLR1 siRNA-treated rats, chemerin-9 did not affect the serum adrenaline level. Further, pretreatment with prazosin, an α-adrenaline receptor blocker, significantly prevented the pressor responses induced by chemerin-9. In summary, we for the first time demonstrated that chemerin-9 stimulates the sympathetic nerves via CMKLR1 perhaps expressed in SFO and PVN, which leads to an increase in systemic BP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bozaoglu K, Bolton K, McMillan J, Zimmet P, Jowett J, Collier G, Walder K, Segal D (2007) Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148:4687–4694. https://doi.org/10.1210/en.2007-0175

    Article  CAS  PubMed  Google Scholar 

  2. Brunetti L, Di Nisio C, Recinella L, Chiavaroli A, Leone S, Ferrante C, Orlando G, Vacca M (2011) Effects of vaspin, chemerin and omentin-1 on feeding behavior and hypothalamic peptide gene expression in the rat. Peptides 32:1866–1871. https://doi.org/10.1016/j.peptides.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  3. Buechler C, Feder S, Haberl EM, Aslanidis C (2019) Chemerin isoforms and activity in obesity. Int J Mol Sci 20:1–16. https://doi.org/10.3390/ijms20051128

    Article  CAS  Google Scholar 

  4. Caron A, Lee S, Elmquist JKGL (2016) Leptin and brain–adipose crosstalks Alexandre. Physiol Behav 176:139–148. https://doi.org/10.1016/j.physbeh.2017.03.040

    Article  CAS  Google Scholar 

  5. Chen S, Gouaux E (2019) Structure and mechanism of AMPA receptor — auxiliary protein complexes. Curr Opin Struct Biol 54:104–111. https://doi.org/10.1016/j.sbi.2019.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chiu C, Miller MC, Caralopoulos IN, Worden MS, Brinker T, Gordon ZN, Johanson CE, Silverberg GD (2012) Temporal course of cerebrospinal fluid dynamics and amyloid accumulation in the aging rat brain from three to thirty months. Fluids Barriers CNS 9:1–8. https://doi.org/10.1186/2045-8118-9-3

    Article  CAS  Google Scholar 

  7. Darios ES, Winner BM, Charvat T, Krasinksi A, Punna S, Watts SW (2016) The adipokine chemerin amplifies electrical field-stimulated contraction in the isolated rat superior mesenteric artery. Am J Physiol Heart Circ Physiol 311:H498–H507. https://doi.org/10.1152/ajpheart.00998.2015

    Article  PubMed  PubMed Central  Google Scholar 

  8. El-Werfali W, Toomasian C, Maliszewska-Scislo M, Li C, Rossi NF (2015) Haemodynamic and renal sympathetic responses to V1b vasopressin receptor activation within the paraventricular nucleus. Exp Physiol 100:553–565. https://doi.org/10.1113/expphysiol.2014.084426

    Article  CAS  PubMed  Google Scholar 

  9. Ferland DJ, Darios ES, Neubig RR, Sjögren B, Truong N, Torres R, Dexheimer TS, Thompson JM, Watts SW (2018) Chemerin-induced arterial contraction is Gi - and calcium- dependent. 88:30–41. https://doi.org/10.1016/j.vph.2016.11.009.Chemerin-induced

  10. Goralski KB, McCarthy TC, Hanniman EA, Zabel BA, Butcher EC, Parlee SD, Muruganandan S, Sinal CJ (2007) Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J Biol Chem 282:28175–28188. https://doi.org/10.1074/jbc.M700793200

    Article  CAS  PubMed  Google Scholar 

  11. Guo X, Fu Y, Xu Y, Weng S, Liu D, Cui D, Yu S, Liu X, Jiang K, Dong Y (2012) Chronic mild restraint stress rats decreased CMKLR1 expression in distinct brain region. Neurosci Lett 524:25–29. https://doi.org/10.1016/j.neulet.2012.06.075

    Article  CAS  PubMed  Google Scholar 

  12. Hallbeck M, Blomqvist A (1999) Spinal cord-projecting vasopressinergic neurons in the rat paraventricular hypothalamus. J Comp Neurol 411:201–211. https://doi.org/10.1002/(SICI)1096-9861(19990823)411:2<201::AID-CNE3>3.0.CO;2-3

    Article  CAS  PubMed  Google Scholar 

  13. Harland D, Gardiner SM, Bennett T (1989) Differential cardiovascular effects of centrally administered vasopressin in conscious Long Evans and Brattleboro rats. Circ Res 65:925–933. https://doi.org/10.1161/01.RES.65.4.925

    Article  CAS  PubMed  Google Scholar 

  14. Helfer G, Ross AW, Thomson LM, Mayer CD, Stoney PN, McCaffery PJ, Morgan PJ (2016) A neuroendocrine role for chemerin in hypothalamic remodelling and photoperiodic control of energy balance. Sci Rep 6:1–12. https://doi.org/10.1038/srep26830

    Article  CAS  Google Scholar 

  15. Helfer G, Wu QF (2018) Chemerin: a multifaceted adipokine involved in metabolic disorders. J Endocrinol 238:R79–R94. https://doi.org/10.1530/JOE-18-0174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De Henau O, Degroot GN, Imbault V, Robert V, De Poorter C, McHeik S, Galés C, Parmentier M, Springael JY (2016) Signaling properties of chemerin receptors CMKLR1, GPR1 and CCRL2. PLoS One 11:1–20. https://doi.org/10.1371/journal.pone.0164179

    Article  CAS  Google Scholar 

  17. Hernandes MS, Troncone LRP (2009) Glycine as a neurotransmitter in the forebrain: a short review. J Neural Transm 116:1551–1560. https://doi.org/10.1007/s00702-009-0326-6

    Article  CAS  PubMed  Google Scholar 

  18. Hirooka Y, Sunagawa K (2010) Hypertension, heart failure, and the sympathetic nervous system: from the regulatory abvormality as the pathophysiology to novel therapeutic aspects. Fukuoka Igaku Zasshi 101:190–197

    CAS  PubMed  Google Scholar 

  19. Hiyama TY, Noda M (2016) Sodium sensing in the subfornical organ and body-fluid homeostasis. Neurosci Res 113:1–11. https://doi.org/10.1016/j.neures.2016.07.007

    Article  CAS  PubMed  Google Scholar 

  20. Huber G, Schuster F, Raasch W (2017) Brain renin-angiotensin system in the pathophysiology of cardiovascular diseases. Pharmacol Res 125:72–90. https://doi.org/10.1016/j.phrs.2017.06.016

    Article  CAS  PubMed  Google Scholar 

  21. Imoto K, Hirakawa M, Okada M, Yamawaki H (2018) Canstatin modulates L-type calcium channel activity in rat ventricular cardiomyocytes. Biochem Biophys Res Commun 499:954–959. https://doi.org/10.1016/j.bbrc.2018.04.026

    Article  CAS  PubMed  Google Scholar 

  22. Kaur J, Adya R, Tan BK, Chen J, Randeva HS (2010) Identification of chemerin receptor (ChemR23) in human endothelial cells: Chemerin-induced endothelial angiogenesis. Biochem Biophys Res Commun 391:1762–1768. https://doi.org/10.1016/j.bbrc.2009.12.150

    Article  CAS  PubMed  Google Scholar 

  23. Kc P, Dick T (2010) Modulation of cardiorespiratory function mediated by the paraventricular nucleus. Respir Physiol Neurobiol 174:55–64. https://doi.org/10.1038/jid.2014.371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kennedy AJ, Davenport AP (2018) International union of basic and clinical pharmacology CIII: Chemerin receptors CMKLR1 (Chemerin1) and GPR1 (Chemerin2) nomenclature, pharmacology, and function. Pharmacol Rev 70:174–196. https://doi.org/10.1124/pr.116.013177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kodama T, Okada M, Yamawaki H (2019) Eukaryotic elongation factor 2 kinase inhibitor, A484954 inhibits noradrenaline-induced acute increase of blood pressure in rats. J Vet Med Sci 81:35–41. https://doi.org/10.1292/jvms.18-0606

    Article  CAS  PubMed  Google Scholar 

  26. Kostopoulos CG, Spiroglou SG, Varakis JN, Apostolakis E, Papadaki HH (2014) Chemerin and CMKLR1 expression in human arteries and periadventitial fat: a possible role for local chemerin in atherosclerosis? BMC Cardiovasc Disord 14:1–9. https://doi.org/10.1186/1471-2261-14-56

    Article  CAS  Google Scholar 

  27. Kubo T (2006) Mechanisms of hypertension in the central nervous system. Yakugaku Zasshi 126:695–709. https://doi.org/10.1248/yakushi.126.695

    Article  CAS  PubMed  Google Scholar 

  28. Kunimoto H, Kazama K, Takai M, Oda M, Okada M, Yamawaki H (2015) Chemerin promotes the proliferation and migration of vascular smooth muscle and increases mouse blood pressure. Am J Physiol Heart Circ Physiol 309:H1017–H1028. https://doi.org/10.1152/ajpheart.00820.2014

    Article  CAS  PubMed  Google Scholar 

  29. Lee B, Shao J (2014) Adiponectin and energy homeostasis. Rev Endocr Metab Disord 15:149–156. https://doi.org/10.1007/s11154-013-9283-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lozić M, Šarenac O, Murphy D, Japundžić-Žigon N (2018) Vasopressin, central autonomic control and blood pressure regulation. Curr Hypertens Rep 20:1–7. https://doi.org/10.1007/s11906-018-0811-0

    Article  CAS  Google Scholar 

  31. Malinow R (2003) AMPA receptor trafficking and long-term potentiation. Philos Trans R Soc Lond B Biol Sci 358:707–714. https://doi.org/10.1098/rstb.2002.1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nomura K, Hiyama TY, Sakuta H, Matsuda T, Lin CH, Kobayashi K, Kobayashi K, Kuwaki T, Takahashi K, Matsui S, Noda M (2019) [Na + ] increases in body fluids sensed by central Na x induce sympathetically mediated blood pressure elevations via H + −dependent activation of ASIC1a. Neuron 101:60–75.e6. https://doi.org/10.1016/j.neuron.2018.11.017

    Article  CAS  PubMed  Google Scholar 

  33. Okada S, Murakami Y, Nakamura K, Yokotani K (2002) Vasopressin V1 receptor-mediated activation of central sympatho-adrenomedullary outflow in rats. Eur J Pharmacol 457:29–35. https://doi.org/10.1016/S0014-2999(02)02652-3

    Article  CAS  PubMed  Google Scholar 

  34. Okada S, Yamaguchi N (2010) α1-Adrenoceptor activation is involved in the central N-methyl-d-aspartate-induced adrenomedullary outflow in rats. Eur J Pharmacol 640:55–62. https://doi.org/10.1016/j.ejphar.2010.04.038

    Article  CAS  PubMed  Google Scholar 

  35. Otani K, Okada M, Yamawaki H (2017) Diverse distribution of tyrosine receptor kinase b isoforms in rat multiple tissues. J Vet Med Sci 79:1516–1523. https://doi.org/10.1292/jvms.17-0257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Paxinos G, Watson C (2014) The rat brain in stereotaxic coordinates: hard cover edition. Elsevier

  37. Rhea EM, Salameh TS, Logsdon AF, Hanson AJ, Erickson MA, Banks WA (2017) Blood-brain barriers in obesity. AAPS J 19:921–930. https://doi.org/10.1208/s12248-017-0079-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gun RS, Song SH, Choi KC, Katoh K, Wittamer V, Parmentier M, Sichi S (2007) Chemerin-a new adipokine that modulates adipogenesis via its own receptor. Biochem Biophys Res Commun 362:1013–1018. https://doi.org/10.1016/j.bbrc.2007.08.104

    Article  CAS  Google Scholar 

  39. Rourke JL, Dranse HJ, Sinal CJ (2013) Towards an integrative approach to understanding the role of chemerin in human health and disease. Obes Rev 14:245–262. https://doi.org/10.1111/obr.12009

    Article  CAS  PubMed  Google Scholar 

  40. Rourke JL, Muruganandan S, Dranse HJ, McMullen NM, Sinal CJ (2014) Gpr1 is an active chemerin receptor influencing glucose homeostasis in obese mice. J Endocrinol 222:201–215. https://doi.org/10.1530/JOE-14-0069

    Article  CAS  PubMed  Google Scholar 

  41. Sell H, Divoux A, Poitou C, Basdevant A, Bouillot JL, Bedossa P, Tordjman J, Eckel J, Clément K (2010) Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery. J Clin Endocrinol Metab 95:2892–2896. https://doi.org/10.1210/jc.2009-2374

    Article  CAS  PubMed  Google Scholar 

  42. Shimamura K, Matsuda M, Miyamoto Y, Yoshimoto R, Seo T, Tokita S (2009) Identification of a stable chemerin analog with potent activity toward ChemR23. Peptides 30:1529–1538. https://doi.org/10.1016/j.peptides.2009.05.030

    Article  CAS  PubMed  Google Scholar 

  43. Shimizu T, Shimizu S, Higashi Y, Nakamura K, Yoshimura N, Saito M (2016) A stress-related peptide bombesin centrally induces frequent urination through brain bombesin receptor types 1 and 2 in the rat. J Pharmacol Exp Ther 356:693–701. https://doi.org/10.1124/jpet.115.230334

    Article  PubMed  PubMed Central  Google Scholar 

  44. Weng C, Shen Z, Li X, Jiang W, Peng L, Yuan H, Yang K, Wang J (2017) Effects of chemerin/CMKLR1 in obesity-induced hypertension and potential mechanism. Am J Transl Res 9:3096–3104

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wittamer V, Franssen JD, Vulcano M, Mirjolet JF, Le Poul E, Migeotte I, Brézillon S, Tyldesley R, Blanpain C, Detheux M, Mantovani A, Sozzani S, Vassart G, Parmentier M, Communi D (2003) Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J Exp Med 198:977–985. https://doi.org/10.1084/jem.20030382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wittamer V, Grégoire F, Robberecht P, Vassart G, Communi D, Parmentier M (2004) The C-terminal nonapeptide of mature chemerin activates the chemerin receptor with low nanomolar potency. J Biol Chem 279:9956–9962. https://doi.org/10.1074/jbc.M313016200

    Article  CAS  PubMed  Google Scholar 

  47. Yamawaki H (2011) Vascular effects of novel adipocytokines: focus on vascular contractility and inflammatory responses. Biol Pharm Bull 34:307–310. https://doi.org/10.1248/bpb.34.307

    Article  CAS  PubMed  Google Scholar 

  48. Zabel BA, Allen SJ, Kulig P, Allen JA, Cichy J, Handel TM, Butcher EC (2005) Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J Biol Chem 280:34661–34666. https://doi.org/10.1074/jbc.M504868200

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Y, Xu N, Ding Y, Zhang Y, Li Q, Flores J, Haghighiabyaneh M, Doycheva D, Tang J, Zhang JH (2018) Chemerin suppresses neuroinflammation and improves neurological recovery via CaMKK2/AMPK/Nrf2 pathway after germinal matrix hemorrhage in neonatal rats. Brain Behav Immun 70:179–193. https://doi.org/10.1016/j.bbi.2018.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by JSPS KAKENHI Grant Number 17H03918 and Kitasato University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyuki Yamawaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1055 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, A., Matsumoto, K., Hori, K. et al. Acute intracerebroventricular injection of chemerin-9 increases systemic blood pressure through activating sympathetic nerves via CMKLR1 in brain. Pflugers Arch - Eur J Physiol 472, 673–681 (2020). https://doi.org/10.1007/s00424-020-02391-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02391-4

Keywords

Navigation