Skip to main content
Log in

Dawning of a new era in TRP channel structural biology by cryo-electron microscopy

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Cryo-electron microscopy (cryo-EM) permits the determination of atomic protein structures by averaging large numbers of individual projection images recorded at cryogenic temperatures—a method termed single-particle analysis. The cryo-preservation traps proteins within a thin glass-like ice layer, making literally a freeze image of proteins in solution. Projections of randomly adopted orientations are merged to reconstruct a 3D density map. While atomic resolution for highly symmetric viruses was achieved already in 2009, the development of new sensitive and fast electron detectors has enabled cryo-EM for smaller and asymmetrical proteins including fragile membrane proteins. As one of the most important structural biology methods at present, cryo-EM was awarded in October 2017 with the Nobel Prize in Chemistry. The molecular understanding of Transient-Receptor-Potential (TRP) channels has been boosted tremendously by cryo-EM single-particle analysis. Several near-atomic and atomic structures gave important mechanistic insights, e.g., into ion permeation and selectivity, gating, as well as into the activation of this enigmatic and medically important membrane protein family by various chemical and physical stimuli. Lastly, these structures have set the starting point for the rational design of TRP channel-targeted therapeutics to counteract life-threatening channelopathies. Here, we attempt a brief introduction to the method, review the latest advances in cryo-EM structure determination of TRP channels, and discuss molecular insights into the channel function based on the wealth of TRP channel cryo-EM structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Autzen HE, Myasnikov AG, Campbell MG, Asarnow D, Julius D, Cheng Y (2017) Structure of the human TRPM4 ion channel in a lipid nanodisc. Science:eaar4510. https://doi.org/10.1126/science.aar4510

  2. Barad BA, Echols N, Wang RY, Cheng Y, DiMaio F, Adams PD, Fraser JS (2015) EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy. Nat Methods 12(10):943–946. https://doi.org/10.1038/nmeth.3541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Beckers AB, Weerts ZZRM, Helyes Z, Masclee AAM, Keszthelyi D (2017) Review article: transient receptor potential channels as possible therapeutic targets in irritable bowel syndrome. Aliment Pharmacol Ther 46(10):938–952. https://doi.org/10.1111/apt.14294

    Article  CAS  PubMed  Google Scholar 

  4. Cao E, Liao M, Cheng Y, Julius D (2013) TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504(7478):113–118. https://doi.org/10.1038/nature12823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen Q, She J, Zeng W, Guo J, Xu H, Bai XC, Jiang Y (2017) Structure of mammalian endolysosomal TRPML1 channel in nanodiscs. Nature 550(7676):415–418. https://doi.org/10.1038/nature24035

    Article  CAS  PubMed  Google Scholar 

  6. Cheng Y (2015) Single-particle cryo-EM at crystallographic resolution. Cell 161(3):450–457. https://doi.org/10.1016/j.cell.2015.03.049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheng Y, Grigorieff N, Penczek PA, Walz T (2015) A primer to single-particle cryo-electron microscopy. Cell 161(3):438–449. https://doi.org/10.1016/j.cell.2015.03.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ciardo MG, Ferrer-Montiel A (2017) Lipids as central modulators of sensory TRP channels. Bba-Biomembranes 1859(9):1615–1628. https://doi.org/10.1016/j.bbamem.2017.04.012

    Article  CAS  PubMed  Google Scholar 

  9. Cohen MR, Moiseenkova-Bell VY (2014) Structure of thermally activated TRP channels. Curr Top Membr 74:181–211. https://doi.org/10.1016/B978-0-12-800181-3.00007-5

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cvetkov TL, Huynh KW, Cohen MR, Moiseenkova-Bell VY (2011) Molecular architecture and subunit organization of TRPA1 ion channel revealed by electron microscopy. J Biol Chem 286(44):38168–38176. https://doi.org/10.1074/jbc.M111.288993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Czarnocki-Cieciura M, Nowotny M (2016) Introduction to high-resolution cryo-electron microscopy. Postepy Biochem 62(3):383–394

    PubMed  Google Scholar 

  12. Danev R, Baumeister W (2017) Expanding the boundaries of cryo-EM with phase plates. Curr Opin Struct Biol 46:87–94. https://doi.org/10.1016/j.sbi.2017.06.006

    Article  CAS  PubMed  Google Scholar 

  13. Denisov IG, Sligar SG (2016) Nanodiscs for structural and functional studies of membrane proteins. Nat Struct Mol Biol 23(6):481–486. https://doi.org/10.1038/nsmb.3195

    Article  CAS  PubMed  Google Scholar 

  14. Denisov IG, Sligar SG (2017) Nanodiscs in membrane biochemistry and biophysics. Chem Rev 117(6):4669–4713. https://doi.org/10.1021/acs.chemrev.6b00690

    Article  CAS  PubMed  Google Scholar 

  15. Diaz-Franulic I, Poblete H, Mino-Galaz G, Gonzalez C, Latorre R (2016) Allosterism and structure in thermally activated transient receptor potential channels. Annu Rev Biophys 45(1):371–398. https://doi.org/10.1146/annurev-biophys-062215-011034

    Article  CAS  PubMed  Google Scholar 

  16. Dubochet J (2016) A reminiscence about early times of vitreous water in electron cryomicroscopy. Biophys J 110(4):756–757. https://doi.org/10.1016/j.bpj.2015.07.049

    Article  CAS  PubMed  Google Scholar 

  17. Elinder F, Liin SI (2017) Actions and mechanisms of polyunsaturated fatty acids on voltage-gated ion channels. Front Physiol 8:43. https://doi.org/10.3389/fphys.2017.00043

    Article  PubMed  PubMed Central  Google Scholar 

  18. Elmlund D, Le SN, Elmlund H (2017) High-resolution cryo-EM: the nuts and bolts. Curr Opin Struct Biol 46:1–6. https://doi.org/10.1016/j.sbi.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  19. Feng S (2017) TRPC channel structure and properties. Adv Exp Med Biol 976:9–23. https://doi.org/10.1007/978-94-024-1088-4_2

    Article  PubMed  Google Scholar 

  20. Fica SM, Nagai K (2017) Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine. Nat Struct Mol Biol 24(10):791–799. https://doi.org/10.1038/nsmb.3463

    Article  CAS  PubMed  Google Scholar 

  21. Frank J (2016) Generalized single-particle cryo-EM—a historical perspective. Microscopy (Oxf) 65(1):3–8. https://doi.org/10.1093/jmicro/dfv358

    Article  Google Scholar 

  22. Frank J (2017) Advances in the field of single-particle cryo-electron microscopy over the last decade. Nat Protoc 12(2):209–212. https://doi.org/10.1038/nprot.2017.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Frank J (2017) The mechanism of translation. F1000Res 6:198. https://doi.org/10.12688/f1000research.9760.1

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gallagher AR, Germino GG, Somlo S (2010) Molecular advances in autosomal dominant polycystic kidney disease. Adv Chronic Kidney Dis 17(2):118–130. https://doi.org/10.1053/j.ackd.2010.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gao Y, Cao E, Julius D, Cheng Y (2016) TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534(7607):347–351. https://doi.org/10.1038/nature17964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gaudet R (2009) Divide and conquer: high resolution structural information on TRP channel fragments. J Gen Physiol 133(3):231–237. https://doi.org/10.1085/jgp.200810137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Giamarchi A, Padilla F, Crest M, Honore E, Delmas P (2006) TRPP2: Ca2+-permeable cation channel and more. Cell Mol Biol (Noisy-le-grand) 52(8):105–114

    CAS  Google Scholar 

  28. Glaeser RM (2016) Specimen behavior in the electron beam. Methods Enzymol 579:19–50. https://doi.org/10.1016/bs.mie.2016.04.010

    Article  CAS  PubMed  Google Scholar 

  29. Grieben M, Pike AC, Shintre CA, Venturi E, El-Ajouz S, Tessitore A, Shrestha L, Mukhopadhyay S, Mahajan P, Chalk R, Burgess-Brown NA, Sitsapesan R, Huiskonen JT, Carpenter EP (2017) Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2). Nat Struct Mol Biol 24(2):114–122. https://doi.org/10.1038/nsmb.3343

    Article  CAS  PubMed  Google Scholar 

  30. Guo J, She J, Zeng W, Chen Q, Bai XC, Jiang Y (2017) Structures of the calcium-activated, non-selective cation channel TRPM4. Nature 552:205–209. https://doi.org/10.1038/nature24997

    CAS  PubMed  Google Scholar 

  31. Hargreaves KM, Ruparel S (2016) Role of oxidized lipids and TRP channels in orofacial pain and inflammation. J Dent Res 95(10):1117–1123. https://doi.org/10.1177/0022034516653751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hellmich UA, Gaudet R (2014) Structural biology of TRP channels. Handb Exp Pharmacol 223:963–990. https://doi.org/10.1007/978-3-319-05161-1_10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Henderson R (2004) Realizing the potential of electron cryo-microscopy. Q Rev Biophys 37(1):3–13. https://doi.org/10.1017/S0033583504003920

    Article  CAS  PubMed  Google Scholar 

  34. Henderson R (2015) Overview and future of single particle electron cryomicroscopy. Arch Biochem Biophys 581:19–24. https://doi.org/10.1016/j.abb.2015.02.036

    Article  CAS  PubMed  Google Scholar 

  35. Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213(4):899–929. https://doi.org/10.1016/S0022-2836(05)80271-2

    Article  CAS  PubMed  Google Scholar 

  36. Hetenyi A, Nemeth L, Weber E, Szakonyi G, Winter Z, Josvay K, Bartus E, Olah Z, Martinek TA (2016) Competitive inhibition of TRPV1-calmodulin interaction by vanilloids. FEBS Lett 590(16):2768–2775. https://doi.org/10.1002/1873-3468.12267

    Article  CAS  PubMed  Google Scholar 

  37. Hirschi M, Herzik MA Jr, Wie J, Suo Y, Borschel WF, Ren D, Lander GC, Lee SY (2017) Cryo-electron microscopy structure of the lysosomal calcium-permeable channel TRPML3. Nature 550(7676):411–414. https://doi.org/10.1038/nature24055

    Article  CAS  PubMed  Google Scholar 

  38. Hughes TET, Lodowski DT, Huynh KW, Yazici A, del Rosario J, Kapoor A, Basak S, Samanta A, Han X, Chakrapani S, Zhou ZH, Filizola M, Rohacs T, Moiseenkova-Bell V (2018) Structural basis of TRPV5 channel inhibition by econazole revealed by cryo-EM. Nat Struct Mol Biol is not available yet

  39. Huynh KW, Cohen MR, Chakrapani S, Holdaway HA, Stewart PL, Moiseenkova-Bell VY (2014) Structural insight into the assembly of TRPV channels. Structure 22(2):260–268. https://doi.org/10.1016/j.str.2013.11.008

    Article  CAS  PubMed  Google Scholar 

  40. Huynh KW, Cohen MR, Jiang J, Samanta A, Lodowski DT, Zhou ZH, Moiseenkova-Bell VY (2016) Structure of the full-length TRPV2 channel by cryo-EM. Nat Commun 7:11130. https://doi.org/10.1038/ncomms11130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huynh KW, Cohen MR, Moiseenkova-Bell VY (2014) Application of amphipols for structure-functional analysis of TRP channels. J Membr Biol 247(9-10):843–851. https://doi.org/10.1007/s00232-014-9684-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jardin I, Lopez JJ, Diez R, Sanchez-Collado J, Cantonero C, Albarran L, Woodard GE, Redondo PC, Salido GM, Smani T, Rosado JA (2017) TRPs in pain sensation. Front Physiol 8:392. https://doi.org/10.3389/fphys.2017.00392

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jiang L, Liu Z, Georgieva D, Kuil ME, Abrahams JP (2010) A novel approximation method of CTF amplitude correction for 3D single particle reconstruction. Ultramicroscopy 110(4):350–358. https://doi.org/10.1016/j.ultramic.2010.01.011

    Article  CAS  PubMed  Google Scholar 

  44. Jin P, Bulkley D, Guo Y, Zhang W, Guo Z, Huynh W, Wu S, Meltzer S, Cheng T, Jan LY, Jan YN, Cheng Y (2017) Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. Nature 547(7661):118–122. https://doi.org/10.1038/nature22981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jonic S (2016) Cryo-electron microscopy analysis of structurally heterogeneous macromolecular complexes. Comput Struct Biotechnol J 14:385–390. https://doi.org/10.1016/j.csbj.2016.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim DN, Sanbonmatsu KY (2017) Tools for the cryo-EM gold rush: going from the cryo-EM map to the atomistic model. Biosci Rep 37(6):BSR20170072. https://doi.org/10.1042/BSR20170072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kuhlbrandt W (2014) Biochemistry. The resolution revolution. Science 343(6178):1443–1444. https://doi.org/10.1126/science.1251652

    Article  PubMed  Google Scholar 

  48. Lau SY, Procko E, Gaudet R (2012) Distinct properties of Ca2+-calmodulin binding to N- and C-terminal regulatory regions of the TRPV1 channel. J Gen Physiol 140(5):541–555. https://doi.org/10.1085/jgp.201210810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lemos FO, Ehrlich BE (2017) Polycystin and calcium signaling in cell death and survival. Cell Calcium 69:37–45. https://doi.org/10.1016/j.ceca.2017.05.011

    Article  PubMed  Google Scholar 

  50. Li H (2017) TRP channel classification. Adv Exp Med Biol 976:1–8. https://doi.org/10.1007/978-94-024-1088-4_1

    Article  PubMed  Google Scholar 

  51. Li M, Zhang WK, Benvin NM, Zhou X, Su D, Li H, Wang S, Michailidis IE, Tong L, Li X, Yang J (2017) Structural basis of dual Ca(2+)/pH regulation of the endolysosomal TRPML1 channel. Nat Struct Mol Biol 24(3):205–213. https://doi.org/10.1038/nsmb.3362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li XM, Mooney P, Zheng S, Booth CR, Braunfeld MB, Gubbens S, Agard DA, Cheng YF (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat Methods 10:584-+. doi:https://doi.org/10.1038/nmeth.2472

  53. Liao HY, Frank J (2010) Definition and estimation of resolution in single-particle reconstructions. Structure 18(7):768–775. https://doi.org/10.1016/j.str.2010.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504(7478):107–112. https://doi.org/10.1038/nature12822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liao M, Cao E, Julius D, Cheng Y (2014) Single particle electron cryo-microscopy of a mammalian ion channel. Curr Opin Struct Biol 27:1–7. https://doi.org/10.1016/j.sbi.2014.02.005

    Article  CAS  PubMed  Google Scholar 

  56. Lishko PV, Procko E, Jin X, Phelps CB, Gaudet R (2007) The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54(6):905–918. https://doi.org/10.1016/j.neuron.2007.05.027

    Article  CAS  PubMed  Google Scholar 

  57. Maruyama Y, Ogura T, Mio K, Kiyonaka S, Kato K, Mori Y, Sato C (2007) Three-dimensional reconstruction using transmission electron microscopy reveals a swollen, bell-shaped structure of transient receptor potential melastatin type 2 cation channel. J Biol Chem 282(51):36961–36970. https://doi.org/10.1074/jbc.M705694200

    Article  CAS  PubMed  Google Scholar 

  58. McGoldrick LL, Singh AK, Saotome K, Yelshanskaya MV, Twomey EC, Grassucci RA, Sobolevsky AI (2017) Opening of the human epithelial calcium channel TRPV6. Nature. https://doi.org/10.1038/nature25182

  59. McMullan G, Faruqi AR, Henderson R (2016) Direct electron detectors. Methods Enzymol 579:1–17. https://doi.org/10.1016/bs.mie.2016.05.056

    Article  CAS  PubMed  Google Scholar 

  60. Menezes LF, Lin CC, Zhou F, Germino GG (2016) Fatty acid oxidation is impaired in an orthologous mouse model of autosomal dominant polycystic kidney disease. Ebiomedicine 5:183–192. https://doi.org/10.1016/j.ebiom.2016.01.027

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mio K, Ogura T, Hara Y, Mori Y, Sato C (2005) The non-selective cation-permeable channel TRPC3 is a tetrahedron with a cap on the large cytoplasmic end. Biochem Biophys Res Commun 333(3):768–777. https://doi.org/10.1016/j.bbrc.2005.05.181

    Article  CAS  PubMed  Google Scholar 

  62. Mio K, Sato C (2017) Lipid environment of membrane proteins in cryo-EM based structural analysis. Biophys Rev. https://doi.org/10.1007/s12551-017-0371-6

  63. Mishyna M, Volokh O, Danilova Y, Gerasimova N, Pechnikova E, Sokolova OS (2017) Effects of radiation damage in studies of protein-DNA complexes by cryo-EM. Micron 96:57–64. https://doi.org/10.1016/j.micron.2017.02.004

    Article  CAS  PubMed  Google Scholar 

  64. Moiseenkova-Bell VY, Stanciu LA, Serysheva II, Tobe BJ, Wensel TG (2008) Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc Natl Acad Sci U S A 105(21):7451–7455. https://doi.org/10.1073/pnas.0711835105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Moiseenkova-Bell VY, Wensel TG (2009) Hot on the trail of TRP channel structure. J Gen Physiol 133(3):239–244. https://doi.org/10.1085/jgp.200810123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Montell C (2011) The history of TRP channels, a commentary and reflection. Pflugers Arch 461(5):499–506. https://doi.org/10.1007/s00424-010-0920-3

    Article  CAS  PubMed  Google Scholar 

  67. Moran MM, Szallasi A (2017) Targeting nociceptive transient receptor potential channels to treat chronic pain: current state of the field. Br J Pharmacol. https://doi.org/10.1111/bph.14044

  68. Mulier M, Vriens J, Voets T (2017) TRP channel pores and local calcium signals. Cell Calcium 66:19–24. https://doi.org/10.1016/j.ceca.2017.04.007

    Article  CAS  PubMed  Google Scholar 

  69. Murata K, Wolf M (2018) Cryo-electron microscopy for structural analysis of dynamic biological macromolecules. Biochim Biophys Acta 1862(2):324–334. https://doi.org/10.1016/j.bbagen.2017.07.020

    Article  CAS  PubMed  Google Scholar 

  70. Nobel Media (2017) The 2017 Nobel Prize in Chemistry—Press Release Nobelprize.org. Nobel Media AB,

  71. Passmore LA, Russo CJ (2016) Specimen preparation for high-resolution cryo-EM. Methods Enzymol 579:51–86. https://doi.org/10.1016/bs.mie.2016.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Patwardhan A (2017) Trends in the electron microscopy data bank (EMDB). Acta Crystallogr D Struct Biol 73(6):503–508. https://doi.org/10.1107/S2059798317004181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Paulsen CE, Armache JP, Gao Y, Cheng Y, Julius D (2015) Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 520(7548):511–517. https://doi.org/10.1038/nature14367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Qian F, Noben-Trauth K (2005) Cellular and molecular function of mucolipins (TRPML) and polycystin 2 (TRPP2). Pflugers Arch 451(1):277–285. https://doi.org/10.1007/s00424-005-1469-4

    Article  CAS  PubMed  Google Scholar 

  75. Razi A, Britton RA, Ortega J (2017) The impact of recent improvements in cryo-electron microscopy technology on the understanding of bacterial ribosome assembly. Nucleic Acids Res 45(3):1027–1040. https://doi.org/10.1093/nar/gkw1231

    Article  PubMed  Google Scholar 

  76. Ripstein ZA, Rubinstein JL (2016) Processing of cryo-EM movie data. Methods Enzymol 579:103–124. https://doi.org/10.1016/bs.mie.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  77. Rohacs T (2014) Phosphoinositide regulation of TRP channels. Handb Exp Pharmacol 223:1143–1176. https://doi.org/10.1007/978-3-319-05161-1_18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rosenthal PB, Rubinstein JL (2015) Validating maps from single particle electron cryomicroscopy. Curr Opin Struct Biol 34:135–144. https://doi.org/10.1016/j.sbi.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  79. Rubinstein JL, Brubaker MA (2015) Alignment of cryo-EM movies of individual particles by optimization of image translations. J Struct Biol 192(2):188–195. https://doi.org/10.1016/j.jsb.2015.08.007

    Article  PubMed  Google Scholar 

  80. Saotome K, Singh AK, Yelshanskaya MV, Sobolevsky AI (2016) Crystal structure of the epithelial calcium channel TRPV6. Nature 534(7608):506–511. https://doi.org/10.1038/nature17975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schmiege P, Fine M, Blobel G, Li X (2017) Human TRPML1 channel structures in open and closed conformations. Nature 550(7676):366–370. https://doi.org/10.1038/nature24036

    Article  CAS  PubMed  Google Scholar 

  82. Shen PS, Yang X, DeCaen PG, Liu X, Bulkley D, Clapham DE, Cao E (2016) The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs. Cell 167:763–773 e711. https://doi.org/10.1016/j.cell.2016.09.048

    Article  CAS  PubMed  Google Scholar 

  83. Sigworth FJ (2016) Principles of cryo-EM single-particle image processing. Microscopy-Jpn 65(1):57–67. https://doi.org/10.1093/jmicro/dfv370

    Article  Google Scholar 

  84. Singh AK, Saotome K, Sobolevsky AI (2017) Swapping of transmembrane domains in the epithelial calcium channel TRPV6. Sci Rep 7(1):10669. https://doi.org/10.1038/s41598-017-10993-9

    Article  PubMed  PubMed Central  Google Scholar 

  85. Stark H, Chari A (2016) Sample preparation of biological macromolecular assemblies for the determination of high-resolution structures by cryo-electron microscopy. Microscopy (Oxf) 65(1):23–34. https://doi.org/10.1093/jmicro/dfv367

    Article  Google Scholar 

  86. Tagari M, Newman R, Chagoyen M, Carazo JM, Henrick K (2002) New electron microscopy database and deposition system. Trends Biochem Sci 27(11):589. https://doi.org/10.1016/S0968-0004(02)02176-X

    Article  CAS  PubMed  Google Scholar 

  87. Takizawa Y, Binshtein E, Erwin AL, Pyburn TM, Mittendorf KF, Ohi MD (2017) While the revolution will not be crystallized, biochemistry reigns supreme. Protein Sci 26(1):69–81. https://doi.org/10.1002/pro.3054

    Article  CAS  PubMed  Google Scholar 

  88. Venkatachalam K, Wong CO, Zhu MX (2015) The role of TRPMLs in endolysosomal trafficking and function. Cell Calcium 58(1):48–56. https://doi.org/10.1016/j.ceca.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  89. Wang HW, Wang JW (2017) How cryo-electron microscopy and X-ray crystallography complement each other. Protein Sci 26(1):32–39. https://doi.org/10.1002/pro.3022

    Article  CAS  PubMed  Google Scholar 

  90. Wilkes M, Madej MG, Kreuter L, Rhinow D, Heinz V, De Sanctis S, Ruppel S, Richter RM, Joos F, Grieben M, Pike AC, Huiskonen JT, Carpenter EP, Kuhlbrandt W, Witzgall R, Ziegler C (2017) Molecular insights into lipid-assisted Ca(2+) regulation of the TRP channel Polycystin-2. Nat Struct Mol Biol 24(2):123–130. https://doi.org/10.1038/nsmb.3357

    Article  CAS  PubMed  Google Scholar 

  91. Winkler PA, Huang Y, Sun W, Du J, Lu W (2017) Electron cryo-microscopy structure of a human TRPM4 channel. Nature 552:200–204. https://doi.org/10.1038/nature24674

    CAS  PubMed  Google Scholar 

  92. Wu SP, Armache JP, Cheng YF (2016) Single-particle cryo-EM data acquisition by using direct electron detection camera. Microscopy-Jpn 65(1):35–41. https://doi.org/10.1093/jmicro/dfv355

    Article  Google Scholar 

  93. Yin Y, Wu M, Zubcevic L, Borschel WF, Lander GC, Lee SY (2017) Structure of the cold- and menthol-sensing ion channel TRPM8. Science:eaan4325. https://doi.org/10.1126/science.aan4325

  94. Zhang S, Li N, Zeng W, Gao N, Yang M (2017) Cryo-EM structures of the mammalian endo-lysosomal TRPML1 channel elucidate the combined regulation mechanism. Protein Cell 8(11):834–847. https://doi.org/10.1007/s13238-017-0476-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhou X, Li M, Su D, Jia Q, Li H, Li X, Yang J (2017) Cryo-EM structures of the human endolysosomal TRPML3 channel in three distinct states. Nat Struct Mol Biol 24(12):1146–1154. https://doi.org/10.1038/nsmb.3502

    Article  PubMed  Google Scholar 

  96. Zubcevic L, Herzik MA Jr, Chung BC, Liu Z, Lander GC, Lee SY (2016) Cryo-electron microscopy structure of the TRPV2 ion channel. Nat Struct Mol Biol 23(2):180–186. https://doi.org/10.1038/nsmb.3159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine M. Ziegler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madej, M., Ziegler, C.M. Dawning of a new era in TRP channel structural biology by cryo-electron microscopy. Pflugers Arch - Eur J Physiol 470, 213–225 (2018). https://doi.org/10.1007/s00424-018-2107-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-018-2107-2

Keywords

Navigation