Skip to main content

Advertisement

Log in

Rab8a is involved in membrane trafficking of Kir6.2 in the MIN6 insulinoma cell line

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Although ATP-sensitive K+ (KATP) channels play an important role in the secretion of insulin by pancreatic beta cells, the mechanisms that regulate the intracellular transport of KATP channel subunit proteins (i.e., Kir6.2 and sulfonylurea receptor 1 (SUR1)) to the plasma membrane remain uncharacterized. We investigated the possibility that an interaction between KATP channel subunit proteins and Rab8a protein, a member of the RAS superfamily, may be involved in the membrane trafficking of KATP channels. Co-immunoprecipitation and immunostaining experiments using co-expression systems with fluorescent protein-tagged Kir6.2 were carried out to identify the coupling of KATP channels and Rab8a proteins in the insulin-secreting cell line, MIN6. Rab8a protein co-localized with Kir6.2 protein, a channel pore subunit (in a granular pattern), and with insulin. Knockdown of the Rab8a gene with RNA interference using small interfering RNA systems caused reductions in the amount of total KATP and plasma membrane surface KATP channels without decreasing the messenger RNA transcription of the KATP channel subunits. Rab8a gene knockdown also enhanced glucose-induced insulin secretion. These results suggest that Rab8a may be involved in membrane trafficking of KATP channels and the maintenance of normal insulin secretion in the MIN6 pancreatic beta cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AcGFP1:

Aequorea coerulescens green fluorescent protein 1

BSA:

Bovine serum albumin

cDNA:

Complementary DNA

DMEM:

Dulbecco’s modified Eagle’s medium

ER:

Endoplasmic reticulum

FBS:

Fetal bovine serum

GAP:

GTPase-activating protein

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GEF:

Guanine nucleotide exchange factor

GTP:

Guanosine triphosphate

HRP:

Horseradish peroxidase

KATP channels:

ATP-sensitive K+ channels

Kir6.x :

Inwardly rectifying K+ channel 6 family

KRH:

Krebs-Ringer HEPES

mRNA:

Messenger RNA

PBS:

Phosphate-buffered saline

PCR:

Polymerase chain reaction

RPMI:

Roswell Park Memorial Institute

SDS:

Sodium dodecyl sulfate

SEM:

Standard error of the mean

siRNA:

Small interfering RNA

SUR:

Sulfonylurea receptor

TBS:

Tris-buffered saline

TBS-T:

0.2% Tween 20 in Tris-buffered saline

References

  1. Agnes AL, Fölsch H, Koivisto UM, Pypaert M, Mellman I (2003) The Rab8 GTPase selectively regulates AP-1B-dependent basolateral transport in polarized Madin-Darby canine kidney cells. J Cell Biol 27:339–350

    Google Scholar 

  2. Cartier EA, Conti LR, Vandenberg CA, Shyng SL (2001) Defective trafficking and function of KATP channels caused by a sulfonylurea receptor 1 mutation associated with persistent hyperinsulinemic hypoglycemia of infancy. Proc Natl Acad Sci U S A 98:2882–2887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chen Q, Rong P, Xu D, Zhu S, Chen L, Xie B, Du Q, Quan C, Sheng Y, Zhao TJ, Li P, Wang HY, Chen S (2017) Rab8a deficiency in skeletal muscle causes hyperlipidemia and hepatosteatosis by impairing muscle lipid uptake and storage. Diabetes 66:2387–2399

    Article  CAS  PubMed  Google Scholar 

  4. Clement JP, Kunjilwar K, Gonzalez G, Schwanstecher M, Panten U, Aguilar-Bryan L, Bryan J (1997) Association and stoichiometry of KATP channel subunits. Neuron 18:827–838

    Article  CAS  PubMed  Google Scholar 

  5. Geng X, Li L, Watkins S, Robbins PD, Drain P (2003) The insulin secretory granule is the major site of KATP channels of the endocrine pancreas. Diabetes 52:767–776

    Article  CAS  PubMed  Google Scholar 

  6. Guiot Y, Stevens M, Marhfour I, Stiernet P, Mikhailov M, Ashcroft SJH, Rahier J, Henquin JC, Sempoux C (2007) Morphological localisation of sulfonylurea receptor 1 in endocrine cells of human, mouse and rat pancreas. Diabetologia 50:1889–1899

    Article  CAS  PubMed  Google Scholar 

  7. Han YE, Lim A, Park SH, Chang S, Lee SH, Ho WK (2015) Rac-mediated actin remodeling and myosin II are involved in KATP channel trafficking in pancreatic β-cells. Exp Mol Med 16:e190

    Article  CAS  Google Scholar 

  8. Hattula K, Furuhjelm J, Tikkanen J, Tanhuanpää K, Laakkonen P, Peränen J (2006) Characterization of the Rab8-specific membrane traffic route linked to protrusion formation. J Cell Sci 119:4866–4877

    Article  CAS  PubMed  Google Scholar 

  9. Huber LA, Pimplikar S, Parton RG, Virta H, Zerial M, Simons K (1993) Rab8, a small GTPase involved in vesicular traffic between the TGN and the basolateral plasma membrane. J Cell Biol 123:35–45

    Article  CAS  Google Scholar 

  10. Iezzi M, Regazzi R, Wollheim CB (2000) The Rab3-interacting molecule RIM is expressed in pancreatic beta-cells and is implicated in insulin exocytosis. FEBS Lett 474:66–70

    Article  CAS  PubMed  Google Scholar 

  11. Inagaki N, Gonoi T, Seino S (1997) Subunit stoichiometry of the pancreatic beta-cell ATP-sensitive K+ channel. FEBS Lett 409:232–236

    Article  CAS  PubMed  Google Scholar 

  12. Kefaloyianni E, Lyssand JS, Moreno C, Delaroche D, Hong M, Fenyö D, Mobbs CV, Neubert TA, Coetzee WA (2013) Comparative proteomic analysis of the ATP-sensitive K+ channel complex in different tissue types. Proteomics 13:368–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lim A, Park SH, Sohn JW, Jeon JH, Park JH, Song DK, Lee SH, Ho WK (2009) Glucose deprivation regulates KATP channel trafficking via AMP-activated protein kinase in pancreatic beta-cells. Diabetes 58:2813–2819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luo L, Wall AA, Yeo JC, Condon ND, Norwood SJ, Schoenwaelder S, Chen KW, Jackson S, Jenkins BJ, Hartland EL, Schroder K, Collins BM, Sweet MJ, Stow JL (2014) Rab8a interacts directly with PI3Kγ to modulate TLR4-driven PI3K and mTOR signalling. Nat Commun 5:4407

    Article  CAS  PubMed  Google Scholar 

  15. Mankouri J, Taneja TK, Smith AJ, Ponnambalam S, Sivaprasadarao A (2006) Kir6.2 mutations causing neonatal diabetes prevent endocytosis of ATP-sensitive potassium channels. EMBO J 25:4142–4151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mori K, Yamashita Y, Teramoto N (2016) Effects of ZD0947, a novel and potent ATP-sensitive K+ channel opener, on smooth muscle-type ATP-sensitive K+ channels. Eur J Pharmacol 791:773–779

    Article  CAS  PubMed  Google Scholar 

  17. Nachury MV, Loktev AV, Zhang Q, Westlake CJ, Peränen J, Merdes A, Slusarski DC, Scheller RH, Bazan JF, Sheffield VC, Jackson PK (2007) A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 129:1201–1213

    Article  CAS  PubMed  Google Scholar 

  18. Park SH, Ryu SY, Yu WJ, Han YE, Ji YS, Oh K, Sohn JW, Lim A, Jeon JP, Lee H, Lee KH, Lee SH, Berggren PO, Jeon JH, Ho WK (2013) Leptin promotes KATP channel trafficking by AMPK signaling in pancreatic β-cells. Proc Natl Acad Sci U S A 110:12673–12678

    Article  PubMed  PubMed Central  Google Scholar 

  19. Partridge CJ, Beech DJ, Sivaprasadarao A (2001) Identification and pharmacological correction of a membrane trafficking defect associated with a mutation in the sulfonylurea receptor causing familial hyperinsulinism. J Biol Chem 276:35947–35952

    Article  CAS  PubMed  Google Scholar 

  20. Peränen J, Auvinen P, Virta H, Wepf R, Simons K (1996) Rab8 promotes polarized membrane transport through reorganization of actin and microtubules in fibroblasts. J Cell Biol 135:153–167

    Article  PubMed  Google Scholar 

  21. Sagen JV, Raeder H, Hathout E, Shehadeh N, Gudmundsson K, Baevre H, Abuelo D, Phornphutkul C, Molnes J, Bell GI, Gloyn AL, Hattersley AT, Molven A, Søvik O, Njølstad PR (2004) Permanent neonatal diabetes due to mutations in KCNJ11 encoding Kir6.2: patient characteristics and initial response to sulfonylurea therapy. Diabetes 53:2713–2718

    Article  CAS  PubMed  Google Scholar 

  22. Sato T, Mushiake S, Kato Y, Sato K, Sato M, Takeda N, Ozono K, Miki K, Kubo Y, Tsuji A, Harada R, Harada A (2007) The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature 448:366–369

    Article  CAS  PubMed  Google Scholar 

  23. Smith AJ, Sivaprasadarao A (2008) Investigation of KATP channel endocytosis and cell surface density by biotinylation and western blotting. Methods Mol Biol 491:79–89

    Article  CAS  PubMed  Google Scholar 

  24. Sun Y, Bilan PJ, Liu Z, Klip A (2010) Rab8A and Rab13 are activated by insulin and regulate GLUT4 translocation in muscle cells. Proc Natl Acad Sci U S A 107:19909–19914

    Article  PubMed  PubMed Central  Google Scholar 

  25. Taschenberger G, Mougey A, Shen S, Lester LB, LaFranchi S, Shyng SL (2002) Identification of a familial hyperinsulinism-causing mutation in the sulfonylurea receptor 1 that prevents normal trafficking and function of KATP channels. J Biol Chem 277:17139–17146

    Article  CAS  PubMed  Google Scholar 

  26. Tucker SJ, Gribble FM, Zhao C, Trapp S, Ashcroft FM (1997) Truncation of Kir6.2 produces ATP-sensitive K+ channels in the absence of the sulphonylurea receptor. Nature 387:179–183

    Article  CAS  PubMed  Google Scholar 

  27. Varadi A, Grant A, McCormack M, Nicolson T, Magistri M, Mitchell KJ, Halestrap AP, Yuan H, Schwappach B, Rutter GA (2006) Intracellular ATP-sensitive K+ channels in mouse pancreatic beta cells: against a role in organelle cation homeostasis. Diabetologia 49:1567–1577

    Article  CAS  PubMed  Google Scholar 

  28. Vaxillaire M, Populaire C, Busiah K, Cavé H, Gloyn AL, Hattersley AT, Czernichow P, Froguel P, Polak M (2004) Kir6.2 mutations are a common cause of permanent neonatal diabetes in a large cohort of French patients. Diabetes 53:2719–2722

    Article  CAS  PubMed  Google Scholar 

  29. Xu S, Kim JH, Hwang KH, Das R, Quan X, Nguyen TT, Kim SJ, Cha SK, Park KS (2015) Autocrine insulin increases plasma membrane KATP channel via PI3K-VAMP2 pathway in MIN6 cells. Biochem Biophys Res Commun 468:752–757

    Article  CAS  PubMed  Google Scholar 

  30. Yamamoto T, Takahara K, Inai T, Node K, Teramoto N (2015) Molecular analysis of ATP-sensitive K+ channel subunits expressed in mouse portal vein. Vas Pharmacol 75:29–39

    Article  CAS  Google Scholar 

  31. Yang SN, Wenna ND, Yu J, Yang G, Qiu H, Yu L, Juntti-Berggren L, Köhler M, Berggren PO (2007) Glucose recruits KATP channels via non-insulin-containing dense-core granules. Cell Metab 6:217–228

    Article  CAS  PubMed  Google Scholar 

  32. Yang HQ, Foster MN, Jana K, Ho J, Rindler MJ, Coetzee WA (2016) Plasticity of sarcolemmal KATP channel surface expression: relevance during ischemia and ischemic preconditioning. Am J Physiol Heart Circ Physiol 310:H1558–H1566

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yi Z, Yokota H, Torii S, Aoki T, Hosaka M, Zhao S, Takata K, Takeuchi T, Izumi T (2002) The Rab27a/granuphilin complex regulates the exocytosis of insulin-containing dense-core granules. Mol Cell Biol 22:1858–1867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zerangue N, Schwappach B, Jan YN, Jan LY (1999) A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane KATP channels. Neuron 22:537–548

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank our colleagues for their valuable suggestions and discussion.

Funding

This work was supported in part by the Japanese Society for the Promotion of Science (JSPS) KAKENHI (M Nomura, grant number 17K09885; N Teramoto, grant number 17H02111) and Grants-in-Aid for Research Fellowship for Young Science Foundation (T Yamamoto, grant number 18K15030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyoshi Teramoto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Ion channels, receptors and transporters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchida, K., Nomura, M., Yamamoto, T. et al. Rab8a is involved in membrane trafficking of Kir6.2 in the MIN6 insulinoma cell line. Pflugers Arch - Eur J Physiol 471, 877–887 (2019). https://doi.org/10.1007/s00424-018-02252-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-018-02252-1

Keywords

Navigation