Skip to main content
Log in

How intravesicular composition affects exocytosis

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Large dense core vesicles and chromaffin granules accumulate solutes at large concentrations (for instance, catecholamines, 0.5–1 M; ATP, 120–300 mM; or Ca2+, 40 mM (12)). Solutes seem to aggregate to a condensed protein matrix, which is mainly composed of chromogranins, to elude osmotic lysis. This association is also responsible for the delayed release of catecholamines during exocytosis. Here, we compile experimental evidence, obtained since the inception of single-cell amperometry, demonstrating how the alteration of intravesicular composition promotes changes in the quantum characteristics of exocytosis. As chromaffin cells are large and their vesicles contain a high concentration of electrochemically detectable species, most experimental data comes from this cell model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ales E, Tabares L, Poyato JM, Valero V, Lindau M, and Alvarez de Toledo G. High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism Nat Cell Biol 1: 40–44, 1999

  2. Alvarez de Toledo G, Fernandez-Chacon R, and Fernandez JM. Release of secretory products during transient vesicle fusion. Nature 363: 554–558, 1993

  3. Ardiles AO, Maripillan J, Lagos VL, Toro R, Mora IG, Villarroel L, Ales E, Borges R, Cardenas AM (2006) A rapid exocytosis mode in chromaffin cells with a neuronal phenotype. J Neurochem 99:29–41

    Article  CAS  PubMed  Google Scholar 

  4. Barg S, Olofsson CS, Schriever-Abeln J, Wendt A, Gebre-Medhin S, Renstrom E, Rorsman P (2002) Delay between fusion pore opening and peptide release from large dense-core vesicles in neuroendocrine cells. Neuron 33:287–299

    Article  CAS  PubMed  Google Scholar 

  5. Bauer RA, Khera RS, Lieber JL, Angleson JK (2004) Recycling of intact dense core vesicles in neurites of NGF-treated PC12 cells. FEBS Lett 571:107–111

    Article  CAS  PubMed  Google Scholar 

  6. Bevington A, Briggs RW, Radda GK, Thulborn KR (1984) Phosphorus-31 nuclear magnetic resonance studies of pig adrenal glands. Neuroscience 11:281–286

    Article  CAS  PubMed  Google Scholar 

  7. Borges R (2013) The ATP or the natural history of neurotransmission. Purinergic Signal 9:5–6

    Article  CAS  PubMed  Google Scholar 

  8. Borges R, Machado JD, Alonso C, Brioso MA, and Gomez JF. Functional role of chromogranins. The intragranular matrix in the last phase of exocytosis Adv Exp Med Biol 482: 69–81, 2000

  9. Borges R, Machado JD, Betancor G, Camacho M (2002) Pharmacological regulation of the late steps of exocytosis. In: Chromaffin cell: transmitter biosynthesis, storage, release, actions, and informatics, vol 971, pp 184–192

    Google Scholar 

  10. Borges R, Machado JD, Betancor G, Camacho M (2002) Pharmacological regulation of the late steps of exocytosis. Ann N Y Acad Sci 971:184–192

    Article  CAS  PubMed  Google Scholar 

  11. Borges R, Travis ER, Hochstetler SE, Wightman RM (1997) Effects of external osmotic pressure on vesicular secretion from bovine adrenal medullary cells. J Biol Chem 272:8325–8331

    Article  CAS  PubMed  Google Scholar 

  12. Camacho M, Machado JD, Alvarez J, Borges R (2008) Intravesicular calcium release mediates the motion and exocytosis of secretory organelles: a study with adrenal chromaffin cells. J Biol Chem 283:22383–22389

    Article  CAS  PubMed  Google Scholar 

  13. Camacho M, Machado JD, Montesinos MS, Criado M, Borges R (2006) Intragranular pH rapidly modulates exocytosis in adrenal chromaffin cells. J Neurochem 96:324–334

    Article  CAS  PubMed  Google Scholar 

  14. Chow RH, von Ruden L, Neher E (1992) Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature 356:60–63

    Article  CAS  PubMed  Google Scholar 

  15. Colliver TL, Pyott SJ, Achalabun M, Ewing AG (2000) VMAT-mediated changes in quantal size and vesicular volume. J Neurosci 20:5276–5282

    CAS  PubMed  Google Scholar 

  16. Corcoran JJ, Korner M, Caughey B, Kirshner N (1986) Metabolic pools of ATP in cultured bovine adrenal medullary chromaffin cells. J Neurochem 47:945–952

    Article  CAS  PubMed  Google Scholar 

  17. Crout JR, Muskus AJ, Trendelenburg U (1962) Effect of tyramine on isolated guinea-pig atria in relation to their noradrenaline stores. Br J Pharmacol Chemother 18:600–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Diaz-Vera J, Camacho M, Machado JD, Dominguez N, Montesinos MS, Hernandez-Fernaud JR, Lujan R, Borges R (2012) Chromogranins A and B are key proteins in amine accumulation, but the catecholamine secretory pathway is conserved without them. FASEB J 26:430–438

    Article  CAS  PubMed  Google Scholar 

  19. Diaz-Vera J, Morales YG, Hernandez-Fernaud JR, Camacho M, Montesinos MS, Calegari F, Huttner WB, Borges R, Machado JD (2010) Chromogranin B gene ablation reduces the catecholamine cargo and decelerates exocytosis in chromaffin secretory vesicles. J Neurosci 30:950–957

    Article  CAS  PubMed  Google Scholar 

  20. Dominguez N, Estevez-Herrera J, Borges R, Machado JD (2014) The interaction between chromogranin A and catecholamines governs exocytosis. FASEB J 28:4657–4667

    Article  CAS  PubMed  Google Scholar 

  21. Elhamdani A, Azizi F, Artalejo CR (2006) Double patch clamp reveals that transient fusion (kiss-and-run) is a major mechanism of secretion in calf adrenal chromaffin cells: high calcium shifts the mechanism from kiss-and-run to complete fusion. J Neurosci 26:3030–3036

    Article  CAS  PubMed  Google Scholar 

  22. Estevez-Herrera J, Dominguez N, Pardo MR, Gonzalez-Santana A, Westhead EW, Borges R, Machado JD (2016) ATP: the crucial component of secretory vesicles. Proc Natl Acad Sci U S A 113:E4098–E4106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Falkensammer G, Fischer-Colbrie R, Winkler H (1985) Biogenesis of chromaffin granules: incorporation of sulfate into chromogranin B and into a proteoglycan. J Neurochem 45:1475–1480

    Article  CAS  PubMed  Google Scholar 

  24. Fathali H, Dunevall J, Majdi S, Cans AS (2017) Extracellular osmotic stress reduces the vesicle size while keeping a constant neurotransmitter concentration. ACS Chem Neurosci 8:368–375

    Article  CAS  PubMed  Google Scholar 

  25. Fon EA, Pothos EN, Sun BC, Killeen N, Sulzer D, Edwards RH (1997) Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action. Neuron 19:1271–1283

    Article  CAS  PubMed  Google Scholar 

  26. Fulop T, Radabaugh S, Smith C (2005) Activity-dependent differential transmitter release in mouse adrenal chromaffin cells. J Neurosci 25:7324–7332

    Article  CAS  PubMed  Google Scholar 

  27. Gerhardt G, Adams RN (1982) Determination of diffusion-coefficients by flow-injection analysis. Analyt Chem 54:2618–2620

    Article  CAS  Google Scholar 

  28. Helle KB, Reed RK, Pihl KE, Serck-Hanssen G (1985) Osmotic properties of the chromogranins and relation to osmotic pressure in catecholamine storage granules. Acta Physiol Scand 123:21–33

    Article  CAS  PubMed  Google Scholar 

  29. Henkel AW, Meiri H, Horstmann H, Lindau M, Almers W (2000) Rhythmic opening and closing of vesicles during constitutive exo- and endocytosis in chromaffin cells. EMBO J 19:84–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Henry JP, Sagne C, Bedet C, Gasnier B (1998) The vesicular monoamine transporter: from chromaffin granule to brain. Neurochem Int 32:227–246

    Article  CAS  PubMed  Google Scholar 

  31. Kasai H, Kishimoto T, Nemoto T, Hatakeyama H, Liu TT, Takahashi N (2006) Two-photon excitation imaging of exocytosis and endocytosis and determination of their spatial organization. Adv Drug Deliv Rev 58:850–877

    Article  CAS  PubMed  Google Scholar 

  32. Lang T, Wacker I, Steyer J, Kaether C, Wunderlich I, Soldati T, Gerdes HH, Almers W (1997) Ca2+-triggered peptide secretion in single cells imaged with green fluorescent protein and evanescent-wave microscopy. Neuron 18:857–863

    Article  CAS  PubMed  Google Scholar 

  33. Liu TT, Kishimoto T, Hatakeyama H, Nemoto T, Takahashi N, Kasai H (2005) Exocytosis and endocytosis of small vesicles in PC12 cells studied with TEPIQ (two-photon extracellular polar-tracer imaging-based quantification) analysis. J Physiol 568:917–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lollike K, Borregaard N, Lindau M (1998) Capacitance flickers and pseudoflickers of small granules, measured in the cell-attached configuration. Biophys J 75:53–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Machado JD, Alonso C, Morales A, Gomez JF, Borges R (2002) Nongenomic regulation of the kinetics of exocytosis by estrogens. J Pharmacol Exper Ther 301:631–637

    Article  Google Scholar 

  36. Machado JD, Diaz-Vera J, Dominguez N, Alvarez CM, Pardo MR, Borges R (2010) Chromogranins A and B as regulators of vesicle cargo and exocytosis. Cell Mol Neurobiol 30:1181–1187

    Article  CAS  PubMed  Google Scholar 

  37. Machado JD, Gomez JF, Betancor G, Camacho M, Brioso MA, Borges R (2002) Hydralazine reduces the quantal size of secretory events by displacement of catecholamines from adrenomedullary chromaffin secretory vesicles. Circ Res 91:830–836

    Article  CAS  PubMed  Google Scholar 

  38. Machado JD, Montesinos MS, Borges R (2008) Good practices in single cell amperometry. Methods Mol Biol 440:297–313

    Article  CAS  PubMed  Google Scholar 

  39. Machado JD, Morales A, Gomez JF, Borges R (2001) cAMP modulates exocytotic kinetics and increases quantal size in chromaffin cells. Mol Pharmacol 60:514–520

    CAS  PubMed  Google Scholar 

  40. Machado JD, Segura F, Brioso MA, Borges R (2000) Nitric oxide modulates a late step of exocytosis. J Biol Chem 275:20274–20279

    Article  CAS  PubMed  Google Scholar 

  41. Montesinos MS, Camacho M, Machado JD, Viveros OH, Beltran B, Borges R (2010) The quantal secretion of catecholamines is impaired by the accumulation of beta-adrenoceptor antagonists into chromaffin cell vesicles. Br J Pharmacol 159:1548–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Montesinos MS, Machado JD, Camacho M, Diaz J, Morales YG, Alvarez de la Rosa D, Carmona E, Castaneyra A, Viveros OH, O'Connor DT, Mahata SK, and Borges R. The crucial role of chromogranins in storage and exocytosis revealed using chromaffin cells from chromogranin A null mouse J Neurosci 28: 3350–3358, 2008

  43. Mundorf ML, Hochstetler SE, Wightman RM (1999) Amine weak bases disrupt vesicular storage and promote exocytosis in chromaffin cells. J Neurochem 73:2397–2405

    Article  CAS  PubMed  Google Scholar 

  44. Mundorf ML, Troyer KP, Hochstetler SE, Near JA, Wightman RM (2000) Vesicular Ca2+ participates in the catalysis of exocytosis. J Biol Chem 275:9136–9142

    Article  CAS  PubMed  Google Scholar 

  45. Nelson N, Harvey WR (1999) Vacuolar and plasma membrane proton-adenosinetriphosphatases. Physiol Rev 79:361–385

    Article  CAS  PubMed  Google Scholar 

  46. Obermuller S, Lindqvist A, Karanauskaite J, Galvanovskis J, Rorsman P, Barg S (2005) Selective nucleotide-release from dense-core granules in insulin-secreting cells. J Cell Sci 118:4271–4282

    Article  CAS  PubMed  Google Scholar 

  47. Oleinick A, Hu R, Ren B, Tian Z, Svir I, Amatore C (2016) Theoretical model of neurotransmitter release during in vivo vesicular exocytosis based on a grainy biphasic nano-structuration of chromogranins within dense core matrixes. J Electrochem Soc 163:H3014–H3024

    Article  CAS  Google Scholar 

  48. Omiatek DM, Bressler AJ, Cans AS, Andrews AM, Heien ML, Ewing AG (2013) The real catecholamine content of secretory vesicles in the CNS revealed by electrochemical cytometry. Sci Rep 3:1447

    Article  PubMed  PubMed Central  Google Scholar 

  49. Perrais D, Kleppe IC, Taraska JW, Almers W (2004) Recapture after exocytosis causes differential retention of protein in granules of bovine chromaffin cells. J Physiol 560:413–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Philippu A, Schumann HJ (1965) Effect of alpha-methyldopa, alpha-methyldopamine, and alpha-methyl-norepinephrine on the norepinephrine content of the isolated heart. Life Sci 4:2039–2046

    Article  CAS  PubMed  Google Scholar 

  51. Pihel K, Travis ER, Borges R, Wightman RM (1996) Exocytotic release from individual granules exhibits similar properties at mast and chromaffin cells. Biophys J 71:1633–1640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rutter GA, Tsuboi T (2004) Kiss and run exocytosis of dense core secretory vesicles. Neuroreport 15:79–81

    Article  PubMed  Google Scholar 

  53. Sawada K, Echigo N, Juge N, Miyaji T, Otsuka M, Omote H, Yamamoto A, Moriyama Y (2008) Identification of a vesicular nucleotide transporter. Proc Natl Acad Sci U S A 105:5683–5686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schroeder TJ, Borges R, Finnegan JM, Pihel K, Amatore C, Wightman RM (1996) Temporally resolved, independent stages of individual exocytotic secretion events. Biophys J 70:1061–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sen R, Sharp RR (1980) The soluble components of chromaffin granules. A carbon-13 NMR survey. Biochim Biophys Acta 630:447–458

    Article  CAS  PubMed  Google Scholar 

  56. Sulzer D, Maidment NT, Rayport S (1993) Amphetamine and other weak bases act to promote reverse transport of dopamine in ventral midbrain neurons. J Neurochem 60:527–535

    Article  CAS  PubMed  Google Scholar 

  57. Taraska JW, Perrais D, Ohara-Imaizumi M, Nagamatsu S, Almers W (2003) Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc Natl Acad Sci U S A 100:2070–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Troyer KP, Mundorf ML, Fries HE, and Wightman RM. Separating vesicle fusion and exocytosis in hypertonic conditions. In: Chromaffin cell: transmitter biosynthesis, storage, release, actions, and informatics 2002, p. 251–253

  59. Troyer KP, Wightman RM (2002) Temporal separation of vesicle release from vesicle fusion during exocytosis. J Biol Chem 277:29101–29107

    Article  CAS  PubMed  Google Scholar 

  60. Verdugo P (1990) Goblet cells secretion and mucogenesis. Annu Rev Physiol 52:157–176

    Article  CAS  PubMed  Google Scholar 

  61. von Grafenstein H, Knight DE (1992) Membrane recapture and early triggered secretion from the newly formed endocytotic compartment in bovine chromaffin cells. J Physiol 453:15–31

    Article  Google Scholar 

  62. von Grafenstein H, Knight DE (1993) Triggered exocytosis and endocytosis have different requirements for calcium and nucleotides in permeabilized bovine chromaffin cells. J Membr Biol 134:1–13

    Article  Google Scholar 

  63. Wightman RM, Jankowski JA, Kennedy RT, Kawagoe KT, Schroeder TJ, Leszczyszyn DJ, Near JA, Diliberto EJ, Viveros OH (1991) Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Nat Acad Sci USA 88:10754–10758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Winkler H, Westhead E (1980) The molecular organization of adrenal chromaffin granules. Neuroscience 5:1803–1823

    Article  CAS  PubMed  Google Scholar 

  65. Yoo SH, Albanesi JP (1990) Ca2(+)-induced conformational change and aggregation of chromogranin A. J Biol Chem 265:14414–14421

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by Spanish MINECO (BFU2013-45253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Borges.

Additional information

This article is part of the special issue on Chromaffin Cells in Pflügers Archiv—European Journal of Physiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mark Wightman, R., Domínguez, N. & Borges, R. How intravesicular composition affects exocytosis. Pflugers Arch - Eur J Physiol 470, 135–141 (2018). https://doi.org/10.1007/s00424-017-2035-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-2035-6

Keywords

Navigation