Skip to main content

Advertisement

Log in

Are podocytes motile?

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Podocytes, the postmitotic and highly branched epithelial cells of the glomerulus, play a pivotal role for the function of the glomerular filtration barrier and the development of chronic kidney disease. It has long been discussed whether podocytes in vivo are motile and can laterally migrate in a coordinated way along the capillaries until they reach the position of naked glomerular basement membrane often found in podocytopathies. Such motility would also be the prerequisite for the replacement of lost podocytes by progenitor cells. Additionally, the change of the podocyte foot processes from a normal to an effaced morphology, like it is found in many kidney diseases, would require a dynamic behavior of podocytes. Since the actin cytoskeleton is expressed in podocytes in vitro and in vivo and the morphology of podocytes is highly dependent on actin, actin-associated, and actin-regulating proteins, it was assumed that podocytes are dynamic and motile. After earlier technical limitations had been overcome and novel microscopic techniques like multiphoton microscopy had been developed, it became possible to continuously study the behavior of podocytes in living rodents and zebrafish larvae under physiological and pathological conditions. Recent in vivo microscopic studies in different model organisms suggest that lateral migration of podocytes in situ is a very unlikely event and only dynamic apical cell protrusions can be observed under pathological conditions. This review discusses recent findings concerning different forms of motility (like lateral translocative (LTM), apical translocative (ATM), and stationary motility (SM)) and their role for podocytopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akilesh S, Suleiman H, Yu H, Stander MC, Lavin P, Gbadegesin R, Antignac C, Pollak M, Kopp JB, Winn MP, Shaw AS (2011) Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis [eng]. J Clin Invest 121:4127–4137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Appel D, Kershaw DB, Smeets B, Yuan G, Fuss A, Frye B, Elger M, Kriz W, Floege J, Moeller MJ (2009) Recruitment of podocytes from glomerular parietal epithelial cells [eng]. J Am Soc Nephrol 20:333–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ashworth S, Teng B, Kaufeld J, Miller E, Tossidou I, Englert C, Bollig F, Staggs L, Roberts ISD, Park J-K, Haller H, Schiffer M (2010) Cofilin-1 inactivation leads to proteinuria—studies in zebrafish, mice and humans [eng]. PLoS One 5:e12626

    Article  PubMed  PubMed Central  Google Scholar 

  4. Besse-Eschmann V, Le Hir M, Endlich N, Endlich K (2004) Alteration of podocytes in a murine model of crescentic glomerulonephritis [eng]. Histochem Cell Biol 122:139–149

    Article  CAS  PubMed  Google Scholar 

  5. Bollee G, Flamant M, Schordan S, Fligny C, Rumpel E, Milon M, Schordan E, Sabaa N, Vandermeersch S, Galaup A, Rodenas A, Casal I, Sunnarborg SW, Salant DJ, Kopp JB, Threadgill DW, Quaggin SE, Dussaule J-C, Germain S, Mesnard L, Endlich K, Boucheix C, Belenfant X, Callard P, Endlich N, Tharaux P-L (2011) Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis [eng]. Nat Med 17:1242–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Brähler S, Yu H, Suleiman H, Krishnan GM, Saunders BT, Kopp JB, Miner JH, Zinselmeyer BH, Shaw AS. (2016) Intravital and kidney slice imaging of podocyte membrane dynamics. Journal of the American Society of Nephrology.

  7. Brown EJ, Schlondorff JS, Becker DJ, Tsukaguchi H, Tonna SJ, Uscinski AL, Higgs HN, Henderson JM, Pollak MR (2010) Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis [eng]. Nat Genet 42:72–76

    Article  CAS  PubMed  Google Scholar 

  8. Buccione R, Orth JD, McNiven MA (2004) Foot and mouth: podosomes, invadopodia and circular dorsal ruffles [eng]. Nature reviews. Mol Cell Biol 5:647–657

    CAS  Google Scholar 

  9. Cheung PK, Klok PA, Baller JF, Bakker WW (2000) Induction of experimental proteinuria in vivo following infusion of human plasma hemopexin [eng]. Kidney Int 57:1512–1520

    Article  CAS  PubMed  Google Scholar 

  10. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy [eng]. Science (New York, NY) 248:73–76

    Article  CAS  Google Scholar 

  11. Drenckhahn D, Franke RP (1988) Ultrastructural organization of contractile and cytoskeletal proteins in glomerular podocytes of chicken, rat, and man [eng]. Lab Invest J Tech Methods pathol 59:673–682

    CAS  Google Scholar 

  12. Endlich N, Schordan E, Cohen CD, Kretzler M, Lewko B, Welsch T, Kriz W, Otey CA, Endlich K (2009) Palladin is a dynamic actin-associated protein in podocytes [eng]. Kidney Int 75:214–226

    Article  CAS  PubMed  Google Scholar 

  13. Endlich N, Simon O, Göpferich A, Wegner H, Moeller MJ, Rumpel E, Kotb AM, Endlich K (2014) Two-photon microscopy reveals stationary podocytes in living zebrafish larvae [eng]. J Am Soc Nephrol 25:681–686

    Article  CAS  PubMed  Google Scholar 

  14. Eng DG, Sunseri MW, Kaverina NV, Roeder SS, Pippin JW, Shankland SJ (2015) Glomerular parietal epithelial cells contribute to adult podocyte regeneration in experimental focal segmental glomerulosclerosis [eng]. Kidney Int 88:999–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fan X, Li Q, Pisarek-Horowitz A, Rasouly HM, Wang X, Bonegio RG, Wang H, McLaughlin M, Mangos S, Kalluri R, Holzman LB, Drummond IA, Brown D, Salant DJ, Lu W (2012) Inhibitory effects of Robo2 on nephrin: a crosstalk between positive and negative signals regulating podocyte structure [eng]. Cell Rep 2:52–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garg P, Verma R, Cook L, Soofi A, Venkatareddy M, George B, Mizuno K, Gurniak C, Witke W, Holzman LB (2010) Actin-depolymerizing factor cofilin-1 is necessary in maintaining mature podocyte architecture [eng]. J Biol Chem 285:22676–22688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Garg P, Verma R, Nihalani D, Johnstone DB, Holzman LB (2007) Neph1 cooperates with nephrin to transduce a signal that induces actin polymerization [eng]. Mol Cell Biol 27:8698–8712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gee HY, Saisawat P, Ashraf S, Hurd TW, Vega-Warner V, Fang H, Beck BB, Gribouval O, Zhou W, Diaz KA, Natarajan S, Wiggins RC, Lovric S, Chernin G, Schoeb DS, Ovunc B, Frishberg Y, Soliman NA, Fathy HM, Goebel H, Hoefele J, Weber LT, Innis JW, Faul C, Han Z, Washburn J, Antignac C, Levy S, Otto EA, Hildebrandt F (2013) ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling [eng]. J Clin Invest 123:3243–3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Guan M, Ma J, Keaton JM, Dimitrov L, Mudgal P, Stromberg M, Bonomo JA, Hicks PJ, Freedman BI, Bowden DW, Ng MCY (2016) Association of kidney structure-related gene variants with type 2 diabetes-attributed end-stage kidney disease in African Americans [eng]. Hum Genet 135:1251–1262

    Article  CAS  PubMed  Google Scholar 

  20. Gupta IR, Baldwin C, Auguste D, Ha KCH, El Andalousi J, Fahiminiya S, Bitzan M, Bernard C, Akbari MR, Narod SA, Rosenblatt DS, Majewski J, Takano T (2013) ARHGDIA: a novel gene implicated in nephrotic syndrome [eng]. J Med Genet 50:330–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hackl MJ, Burford JL, Villanueva K, Lam L, Suszták K, Schermer B, Benzing T, Peti-Peterdi J (2013) Tracking the fate of glomerular epithelial cells in vivo using serial multiphoton imaging in new mouse models with fluorescent lineage tags [eng]. Nat Med 19:1661–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Haemmerli G, Arnold B, Sträuli P (1983) Cellular motility on glass and in tissues:Similarities and dissimilarities. Cell Biol Int Rep 7:709–725

    Article  CAS  PubMed  Google Scholar 

  23. Hall A (1998) Rho GTPases and the actin cytoskeleton [eng]. Science (New York, NY) 279:509–514

    Article  CAS  Google Scholar 

  24. Hodgin JB, Bitzer M, Wickman L, Afshinnia F, Wang SQ, O'Connor C, Yang Y, Meadowbrooke C, Chowdhury M, Kikuchi M, Wiggins JE, Wiggins RC (2015) Glomerular aging and focal global glomerulosclerosis: a podometric perspective [eng]. J Am Soc Nephrol 26:3162–3178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hoon J-L, Wong W-K, Koh C-G (2012) Functions and regulation of circular dorsal ruffles [eng]. Mol Cell Biol 32:4246–4257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ichimura K, Kurihara H, Sakai T (2003) Actin filament organization of foot processes in rat podocytes [eng]. J Histochem Cytochem Off J Histochem Soc 51:1589–1600

    Article  CAS  Google Scholar 

  27. Jones N, Blasutig IM, Eremina V, Ruston JM, Bladt F, Li H, Huang H, Larose L, Li SS-C, Takano T, Quaggin SE, Pawson T (2006) Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes [eng]. Nature 440:818–823

    Article  CAS  PubMed  Google Scholar 

  28. Kikuchi M, Wickman L, Rabah R, Wiggins RC (2017) Podocyte number and density changes during early human life [eng]. Pediatr Nephrol 32:823–834

    Article  PubMed  Google Scholar 

  29. Kobayashi N, Mundel P (1998) A role of microtubules during the formation of cell processes in neuronal and non-neuronal cells [eng]. Cell Tissue Res 291:163–174

    Article  CAS  PubMed  Google Scholar 

  30. Kobayashi T, Notoya M, Shinosaki T, Kurihara H (2009) Cortactin interacts with podocalyxin and mediates morphological change of podocytes through its phosphorylation [eng]. Nephron Exp Nephrol 113:e89–e96

    Article  CAS  PubMed  Google Scholar 

  31. Kotb AM, Simon O, Blumenthal A, Vogelgesang S, Dombrowski F, Amann K, Zimmermann U, Endlich K, Endlich N (2016) Knockdown of ApoL1 in zebrafish larvae affects the glomerular filtration barrier and the expression of nephrin [eng]. PLoS One 11:e0153768

    Article  PubMed  PubMed Central  Google Scholar 

  32. Lal MA, Andersson A-C, Katayama K, Xiao Z, Nukui M, Hultenby K, Wernerson A, Tryggvason K (2015) Rhophilin-1 is a key regulator of the podocyte cytoskeleton and is essential for glomerular filtration [eng]. J Am Soc Nephrol 26:647–662

    Article  CAS  PubMed  Google Scholar 

  33. Lee HW, Khan SQ, Faridi MH, Wei C, Tardi NJ, Altintas MM, Elshabrawy HA, Mangos S, Quick KL, Sever S, Reiser J, Gupta V (2015) A podocyte-based automated screening assay identifies protective small molecules [eng]. J Am Soc Nephrol 26:2741–2752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lennon R, Singh A, Welsh GI, Coward RJ, Satchell S, Ni L, Mathieson PW, Bakker WW, Saleem MA (2008) Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes [eng]. J Am Soc Nephrol 19:2140–2149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lichtnekert J, Kaverina NV, Eng DG, Gross KW, Kutz JN, Pippin JW, Shankland SJ (2016) Renin-angiotensin-aldosterone system inhibition increases podocyte derivation from cells of renin lineage [eng]. J Am Soc Nephrol 27:3611–3627

    Article  PubMed  Google Scholar 

  36. Motonishi S, Nangaku M, Wada T, Ishimoto Y, Ohse T, Matsusaka T, Kubota N, Shimizu A, Kadowaki T, Tobe K, Inagi R (2015) Sirtuin1 maintains actin cytoskeleton by deacetylation of cortactin in injured podocytes [eng]. J Am Soc Nephrol 26:1939–1959

    Article  CAS  PubMed  Google Scholar 

  37. Mundel P, Kriz W (1995) Structure and function of podocytes: an update [eng]. Anat Embryol 192:385–397

    Article  CAS  PubMed  Google Scholar 

  38. Peti-Peterdi J (2005) Multiphoton imaging of renal tissues in vitro [eng]. Am J Physiol Renal Physiol 288:F1079–F1083

    Article  CAS  PubMed  Google Scholar 

  39. Peti-Peterdi J, Morishima S, Bell PD, Okada Y (2002) Two-photon excitation fluorescence imaging of the living juxtaglomerular apparatus [eng]. Am J Physiol Renal Physiol 283:F197–F201

    Article  CAS  PubMed  Google Scholar 

  40. Peti-Peterdi J, Sipos A (2010) A high-powered view of the filtration barrier [eng]. J Am Soc Nephrol 21:1835–1841

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pippin JW, Sparks MA, Glenn ST, Buitrago S, Coffman TM, Duffield JS, Gross KW, Shankland SJ (2013) Cells of renin lineage are progenitors of podocytes and parietal epithelial cells in experimental glomerular disease [eng]. Am J Pathol 183:542–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Reiser J, Oh J, Shirato I, Asanuma K, Hug A, Mundel TM, Honey K, Ishidoh K, Kominami E, Kreidberg JA, Tomino Y, Mundel P (2004) Podocyte migration during nephrotic syndrome requires a coordinated interplay between cathepsin L and alpha3 integrin [eng]. J Biol Chem 279:34827–34832

    Article  CAS  PubMed  Google Scholar 

  43. Schell C, Baumhakl L, Salou S, Conzelmann A-C, Meyer C, Helmstadter M, Wrede C, Grahammer F, Eimer S, Kerjaschki D, Walz G, Snapper S, Huber TB (2013) N-wasp is required for stabilization of podocyte foot processes [eng]. J Am Soc Nephrol 24:713–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schiwek D, Endlich N, Holzman L, Holthofer H, Kriz W, Endlich K (2004) Stable expression of nephrin and localization to cell-cell contacts in novel murine podocyte cell lines [eng]. Kidney Int 66:91–101

    Article  CAS  PubMed  Google Scholar 

  45. Shankland SJ, Pippin JW, Duffield JS (2014) Progenitor cells and podocyte regeneration [eng]. Semin Nephrol 34:418–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Siegerist F, Blumenthal A, Zhou W, Endlich K, Endlich N (2017) Acute podocyte injury is not a stimulus for podocytes to migrate along the glomerular basement membrane in zebrafish larvae. Sci Rep 2017

  47. Thomasova D, Ebrahim M, Fleckinger K, Li M, Molnar J, Popper B, Liapis H, Kotb AM, Siegerist F, Endlich N, Anders H-J (2016) MDM2 prevents spontaneous tubular epithelial cell death and acute kidney injury [eng]. Cell Death Dis 7:e2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Venkatareddy M, Cook L, Abuarquob K, Verma R, Garg P (2011) Nephrin regulates lamellipodia formation by assembling a protein complex that includes Ship2, filamin and lamellipodin [eng]. PLoS One 6:e28710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Verma R, Kovari I, Soofi A, Nihalani D, Patrie K, Holzman LB (2006) Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization [eng]. J Clin Invest 116:1346–1359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Welsch T, Endlich N, Kriz W, Endlich K (2001) CD2AP and p130Cas localize to different F-actin structures in podocytes [eng]. Am J Physiol Renal Physiol 281:F769–F777

    CAS  PubMed  Google Scholar 

  51. Wharram BL, Goyal M, Wiggins JE, Sanden SK, Hussain S, Filipiak WE, Saunders TL, Dysko RC, Kohno K, Holzman LB, Wiggins RC (2005) Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene [eng]. J Am Soc Nephrol 16:2941–2952

    Article  CAS  PubMed  Google Scholar 

  52. Widmeier E, Tan W, Airik M, Hildebrandt F (2017) A small molecule screening to detect potential therapeutic targets in human podocytes [eng]. Am J Physiol Renal Physiol 312:F157–F171

    Article  CAS  PubMed  Google Scholar 

  53. Yanagida-Asanuma E, Asanuma K, Kim K, Donnelly M, Young Choi H, Hyung Chang J, Suetsugu S, Tomino Y, Takenawa T, Faul C, Mundel P (2007) Synaptopodin protects against proteinuria by disrupting Cdc42:IRSp53:Mena signaling complexes in kidney podocytes [eng]. Am J Pathol 171:415–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yu H, Suleiman H, Kim AHJ, Miner JH, Dani A, Shaw AS, Akilesh S (2013) Rac1 activation in podocytes induces rapid foot process effacement and proteinuria [eng]. Mol Cell Biol 33:4755–4764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhu L, Jiang R, Aoudjit L, Jones N, Takano T (2011) Activation of RhoA in podocytes induces focal segmental glomerulosclerosis [eng]. J Am Soc Nephrol 22:1621–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants of the German Federal Ministry of Education and Research (BMBF) to N.E. (E-Rare project “Rare-G,” grant 01GM1208B, and project “STOP-FSGS,” grant 01GM1518B), by a scholarship of the Gerhard-Domagk-Program of the University Medicine Greifswald to F.S. and by a grant of the European Union within the 7th Framework Program to K.E. (project “EnVision,” grant 264143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Endlich.

Ethics declarations

Funding

This study was supported by grants of the German Federal Ministry of Education and Research (BMBF) to N.E. (E-Rare project “Rare-G,” grant 01GM1208B, and project “STOP-FSGS,” grant 01GM1518B), by a scholarship of the Gerhard-Domagk-Program of the University Medicine Greifswald to F.S. and by a grant of the European Union within the 7th Framework Program to K.E. (project “EnVision,” grant 264,143).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This article is part of the special issue on Functional Anatomy of the Kidney in Health and Disease in Pflügers Archiv—European Journal of Physiology.

Electronic supplementary material

ESM 1.

shows a four dimensional (4D) movie acquired over 24 h of a zebrafish pronephric glomerulus during induction of podocyte injury in the NTR/MTZ model [55]. Podocytes develop sub-podocyte space pseudocysts and subsequently detach from the glomerular basement membrane. No LTM or ATM is seen in the remaining cells. (AVI 916 kb)

ESM 2.

shows a movie of numerous podocytes with pseudocysts after induction of podocyte injury acquired over 94 s (See Fig. 3). Cell nuclei are stained by Hoechst 33342 and the glomerular capillaries by red fluorescent 2,000 kDa Dextran. Hoechst-stained blood cells can be seen running through the capillaries whereas the injured podocytes do not show lateral (LTM) or apical (ATM) motility. (AVI 1975 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Endlich, N., Siegerist, F. & Endlich, K. Are podocytes motile?. Pflugers Arch - Eur J Physiol 469, 951–957 (2017). https://doi.org/10.1007/s00424-017-2016-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-017-2016-9

Keywords

Navigation