Skip to main content
Log in

Amino acid transporter B0AT1 (slc6a19) and ancillary protein: impact on function

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Amino acids play an important role in the metabolism of all organisms. Their epithelial re-absorption is due to specific transport proteins, such as B0AT1, a Na+-coupled neutral amino acid symporter belonging to the solute carrier 6 family. Here, a recently cloned fish orthologue, from the intestine of Salmo salar, was electrophysiologically characterized with the two-electrode voltage clamp technique, in Xenopus laevis oocytes heterologously expressing the transporter. Substrate specificity, apparent affinities and the ionic dependence of the transport mechanism were determined in the presence of specific collectrin. Results demonstrated that like the human, but differently from sea bass (Dicentrarchus labrax) orthologue, salmon B0AT1 needs to be associated with partner proteins to be correctly expressed at the oocyte plasma membrane. Cloning of sea bass collectrin and comparison of membrane expression and functionality of the B0AT1 orthologue transporters allowed a deeper investigation on the role of their interactions. The parameters acquired by electrophysiological and immunolocalization experiments in the mammalian and fish transporters contributed to highlight the dynamic of relations and impacts on transport function of the ancillary proteins. The comparative characterization of the physiological parameters of amino acid transporters with auxiliary proteins can help the comprehension of the regulatory mechanism of essential nutrient absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bohmer C, Broer A, Munzinger M, Kowalczuk S, Rasko JE, Lang F, Broer S (2005) Characterization of mouse amino acid transporter B0AT1 (slc6a19). Biochem J 389:745–751

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bossi E, Centinaio E, Castagna M, Giovannardi S, Vincenti S, Sacchi VF, Peres A (1999) Ion binding and permeation through the lepidopteran amino acid transporter KAAT1 expressed in Xenopus oocytes. J Physiol-London 515:729–742. doi:10.1111/j.1469-7793.1999.729ab.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bossi E, Sacchi VF, Peres A (1999) Ionic selectivity of the coupled and uncoupled currents carried by the amino acid transporter KAAT1. Pflugers Arch 438:788–796

    Article  CAS  PubMed  Google Scholar 

  4. Bossi E, Fabbrini MS, Ceriotti A (2007) Exogenous protein expression in Xenopus Laevis oocyte, basic procedure. In: Grandi G (ed) In vitro transcription and translation protocols, 375th edn. Humana Press, City, pp 107–131

    Google Scholar 

  5. Bossi E, Renna MD, Sangaletti R, D'Antoni F, Cherubino F, Kottra G, Peres A (2011) Residues R282 and D341 act as electrostatic gates in the proton-dependent oligopeptide transporter PepT1. J Physiol 589:495–510

    Article  CAS  PubMed  Google Scholar 

  6. Bossi E, Cherubino F, Margheritis E, Oyadeyi AS, Vollero A, Peres A (2012) Temperature effects on the kinetic properties of the rabbit intestinal oligopeptide cotransporter PepT1. Pflugers Arch 464:183–191

    Article  CAS  PubMed  Google Scholar 

  7. Broer A, Klingel K, Kowalczuk S, Rasko JE, Cavanaugh J, Broer S (2004) Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder. J BiolChem 279:24467–24476

    CAS  Google Scholar 

  8. Broer A, Cavanaugh JA, Rasko JE, Broer S (2006) The molecular basis of neutral aminoacidurias. Arch Eur J Physiol 451:511–517. doi:10.1007/s00424-005-1481-8

    Article  Google Scholar 

  9. Camargo SM, Makrides V, Virkki LV, Forster IC, Verrey F (2005) Steady-state kinetic characterization of the mouse B(0)AT1 sodium-dependent neutral amino acid transporter. Pflugers Arch 451:338–348

    Article  CAS  PubMed  Google Scholar 

  10. Camargo SM, Singer D, Makrides V, Huggel K, Pos KM, Wagner CA, Kuba K, Danilczyk U, Skovby F, Kleta Ret al (2008) Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with Hartnup mutations. Gastroenterology

  11. Cheon CK, Lee BH, Ko JM, Kim HJ, Yoo HW (2010) Novel mutation in SLC6A19 causing late-onset seizures in Hartnup disorder. Pediatr Neurol 42:369–371. doi:10.1016/j.pediatrneurol.2010.01.009

    Article  PubMed  Google Scholar 

  12. Daniel H, Kottra G (2004) The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch 447:610–618

    Article  CAS  PubMed  Google Scholar 

  13. Danilczyk U, Sarao R, Remy C, Benabbas C, Stange G, Richter A, Arya S, Pospisilik JA, Singer D, Camargo SM et al (2006) Essential role for collectrin in renal amino acid transport. Nature 444:1088–1091

    Article  CAS  PubMed  Google Scholar 

  14. Fairweather SJ, Broer A, Subramanian N, Tumer E, Cheng Q, Schmoll D, O'Mara ML, Broer S (2015) Molecular basis for the interaction of the mammalian amino acid transporters B0AT1 and B0AT3 with their ancillary protein collectrin. J Biol Chem 290:24308–24325. doi:10.1074/jbc.M115.648519

    Article  CAS  PubMed  Google Scholar 

  15. Forrest LR, Rudnick G (2009) The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology (Bethesda) 24:377–386. doi:10.1152/physiol.00030.2009

    Article  CAS  Google Scholar 

  16. Hashimoto T, Perlot T, Rehman A, Trichereau J, Ishiguro H, Paolino M, Sigl V, Hanada T, Hanada R, Lipinski S et al (2012) ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature 487:477–481

    Article  CAS  PubMed  Google Scholar 

  17. Imai Y, Kuba K, Ohto-Nakanishi T, Penninger JM (2010) Angiotensin-converting enzyme 2 (ACE2) in disease pathogenesis. Circ J 74:405–410

    Article  CAS  PubMed  Google Scholar 

  18. Kleta R, Romeo E, Ristic Z, Ohura T, Stuart C, Arcos-Burgos M, Dave MH, Wagner CA, Camargo SR, Inoue S et al (2004) Mutations in SLC6A19, encoding B(0)AT1, cause Hartnup disorder. Nat Genet 36:999–1002

    Article  CAS  PubMed  Google Scholar 

  19. Kowalczuk S, Broer A, Tietze N, Vanslambrouck JM, Rasko JE, Broer S (2008) A protein complex in the brush-border membrane explains a Hartnup disorder allele. FASEB J 22:2880–2887

    Article  CAS  PubMed  Google Scholar 

  20. Kwasek K, Terova G, Lee BJ, Bossi E, Saroglia M, Dabrowski K (2014) Dietary methionine supplementation alters the expression of genes involved in methionine metabolism in salmonids. Aquaculture 433:223–228. doi:10.1016/j.aquaculture.2014.05.031

    Article  CAS  Google Scholar 

  21. Margheritis E, Terova G, Cinquetti R, Peres A, Bossi E (2013) Functional properties of a newly cloned fish ortholog of the neutral amino acid transporter B0AT1 (SLC6A19). Comp Biochem Physiol A Mol Integr Physiol 166:285–292. doi:10.1016/j.cbpa.2013.06.027

    Article  CAS  PubMed  Google Scholar 

  22. McCoy KE, Zhou X, Vize PD (2008) Collectrin/tmem27 is expressed at high levels in all segments of the developing Xenopus pronephric nephron and in the Wolffian duct. Gene Expr Patterns 8:271–274. doi:10.1016/j.gep.2007.12.002

    Article  CAS  PubMed  Google Scholar 

  23. Mertl M, Daniel H, Kottra G (2008) Substrate-induced changes in the density of peptide transporter PEPT1 expressed in Xenopus oocytes. Am J Physiol Cell Physiol 295:C1332–C1343. doi:10.1152/ajpcell.00241.2008

    Article  CAS  PubMed  Google Scholar 

  24. Nelson N, Sacher A, Nelson H (2002) The significance of molecular slips in transport systems. Nat Rev Mol Cell Biol 3:876–881

    Article  CAS  PubMed  Google Scholar 

  25. Peres A, Giovannardi S, Bossi E, Fesce R (2004) Electrophysiological insights into the mechanism of ion-coupled cotransporters. News Physiol Sci 19:80–84

    CAS  PubMed  Google Scholar 

  26. Renna MD, Oyadeyi AS, Bossi E, Kottra G, Peres A (2011) Functional and structural determinants of reverse operation in the pH-dependent oligopeptide transporter PepT1. Cell MolLife Sci 68:2961–2975

    Article  CAS  Google Scholar 

  27. Renna MD, Sangaletti R, Bossi E, Cherubino F, Kottra G, Peres A (2011) Unified modeling of the mammalian and fish proton-dependent oligopeptide transporter PepT1. Channels (Austin) 5:89–99

    Article  CAS  Google Scholar 

  28. Rimoldi S, Bossi E, Harpaz S, Cattaneo AG, Bernardini G, Saroglia M, Terova G (2015) Intestinal B(0)AT1 (SLC6A19) and PEPT1 (SLC15A1) mRNA levels in European sea bass (Dicentrarchus labrax) reared in fresh water and fed fish and plant protein sources. J Nutr Sci 4, e21. doi:10.1017/jns.2015.9

    Article  PubMed  PubMed Central  Google Scholar 

  29. Romano A, Barca A, Storelli C, Verri T (2014) Teleost fish models in membrane transport research: the PEPT1(SLC15A1) H+-oligopeptide transporter as a case study. J Physiol 592:881–897

    Article  CAS  PubMed  Google Scholar 

  30. Rudnick G, Kramer R, Blakely RD, Murphy DL, Verrey F (2014) The SLC6 transporters: perspectives on structure, functions, regulation, and models for transporter dysfunction. Arch Eur J Physiol 466:25–42. doi:10.1007/s00424-013-1410-1

    Article  CAS  Google Scholar 

  31. Sangaletti R, Terova G, Peres A, Bossi E, Cora S, Saroglia M (2009) Functional expression of the oligopeptide transporter PepT1 from the sea bass (Dicentrarchus labrax). Pflugers Arch

  32. Seow HF, Broer S, Broer A, Bailey CG, Potter SJ, Cavanaugh JA, Rasko JE (2004) Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Nat Genet 36:1003–1007

    Article  CAS  PubMed  Google Scholar 

  33. Singer D, Camargo SM (2011) Collectrin and ACE2 in renal and intestinal amino acid transport. Channels (Austin) 5:410–423

    Article  CAS  Google Scholar 

  34. Singer D, Camargo SM, Huggel K, Romeo E, Danilczyk U, Kuba K, Chesnov S, Caron MG, Penninger JM, Verrey F (2009) Orphan transporter SLC6A18 is renal neutral amino acid transporter B0AT3. J Biol Chem 284:19953–19960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Verrey F, Singer D, Ramadan T, Vuille-Dit-Bille RN, Mariotta L, Camargo SM (2009) Kidney amino acid transport. Pflugers Arch

  36. Vollero A, Imperiali FG, Cinquetti R, Margheritis E, Peres A, Bossi E (2016) The D-amino acid transport by the invertebrate SLC6 transporters KAAT1 and CAATCH1 from Manduca sexta. Physiol Rep 4. Doi: 10.14814/phy2.12691

  37. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporters. Nature 437:215–223. doi:10.1038/Nature03978

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been funded under the seventh EU Framework Programme by the ARRAINA project No. 288925: Advanced Research Initiatives for Nutrition & Aquaculture. The views expressed in this work are the sole responsibility of the authors and do not necessary reflect the views of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Bossi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. The experiments were carried out according to the institutional and national ethical guidelines (permission no. 05/12 and no. 1011/2015).

Additional information

Eleonora Margheritis and Francesca Guia Imperiali contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Margheritis, E., Imperiali, F.G., Cinquetti, R. et al. Amino acid transporter B0AT1 (slc6a19) and ancillary protein: impact on function. Pflugers Arch - Eur J Physiol 468, 1363–1374 (2016). https://doi.org/10.1007/s00424-016-1842-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1842-5

Keywords

Navigation