Skip to main content
Log in

Plasma membrane insertion of epithelial sodium channels occurs with dual kinetics

  • Ion channels, receptors and transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The epithelial sodium channel (ENaC) constitutes the rate-limiting step for Na+ transport across electrically tight epithelia. Regulation of ENaC activity is critical for electrolyte and extracellular volume homeostasis, as well as for lung liquid clearance and colon Na+ handling. ENaC activity is tightly controlled by a combination of mechanisms involving changes in open probability and plasma membrane abundance. The latter reflects a combination in channel biosynthesis and trafficking to and from the membrane. Studying ENaC trafficking with different techniques in a variety of expression systems has yielded inconsistent results, indicating either fast or slow rates of insertion and retrieval, which range from the order of minutes to several hours. Here, we use Xenopus oocytes as ENaC expression system to study channel insertion rate in the membrane using two different techniques under comparable conditions: (1) confocal microscopy coupled to fluorescence recovery after photobleaching (FRAP) measurements; and (2) fluorescent bungarotoxin (BTX) binding to ENaC subunits modified to include BTX binding sites (BBSs) in their extracellular domain, a technique that has not been previously used to study ENaC trafficking. Our confocal-FRAP data indicate a fast rate of ENaC incorporation to the membrane in a process conditioned by channel subunit composition. On the other hand, BTX binding experiments indicate much slower channel insertion rates, with matching slow ENaC retrieval rates. The data support a model that includes fast recycling of endocytosed ENaC with parallel incorporation of newly synthesized channels at a slower rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alvarez de la Rosa D, Li H, Canessa CM (2002) Effects of aldosterone on biosynthesis, traffic, and functional expression of epithelial sodium channels in A6 cells. J Gen Physiol 119:427–442. doi:10.1085/jgp.20028559

    Article  CAS  PubMed  Google Scholar 

  2. Alvarez de la Rosa D, Zhang P, Naray-Fejes-Toth A, Fejes-Toth G, Canessa CM (1999) The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes. J Biol Chem 274:37834–37839. doi:10.1074/jbc.274.53.37834

    Article  CAS  PubMed  Google Scholar 

  3. Baez-Pagan CA, Martinez-Ortiz Y, Otero-Cruz JD, Salgado-Villanueva IK, Velazquez G, Ortiz-Acevedo A, Quesada O, Silva WI, Lasalde-Dominicci JA (2008) Potential role of caveolin-1-positive domains in the regulation of the acetylcholine receptor’s activatable pool: implications in the pathogenesis of a novel congenital myasthenic syndrome. Channels (Austin) 2:180–190

    Article  Google Scholar 

  4. Barmeyer C, Harren M, Schmitz H, Heinzel-Pleines U, Mankertz J, Seidler U, Horak I, Wiedenmann B, Fromm M, Schulzke JD (2004) Mechanisms of diarrhea in the interleukin-2-deficient mouse model of colonic inflammation. Am J Physiol Gastrointest Liver Physiol 286:G244–252. doi:10.1152/ajpgi.00141.2003

    Article  CAS  PubMed  Google Scholar 

  5. Bogdanov Y, Michels G, Armstrong-Gold C, Haydon PG, Lindstrom J, Pangalos M, Moss SJ (2006) Synaptic GABAA receptors are directly recruited from their extrasynaptic counterparts. EMBO J 25:4381–4389. doi:10.1038/sj.emboj.7601309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bruederle CE, Gay J, Shyng SL (2011) A role of the sulfonylurea receptor 1 in endocytic trafficking of ATP-sensitive potassium channels. Traffic 12:1242–1256. doi:10.1111/j.1600-0854.2011.01227.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Butterworth MB (2010) Regulation of the epithelial sodium channel (ENaC) by membrane trafficking. Biochim Biophys Acta 1802:1166–1177. doi:10.1016/j.bbadis.2010.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Butterworth MB, Edinger RS, Frizzell RA, Johnson JP (2009) Regulation of the epithelial sodium channel by membrane trafficking. Am J Physiol Renal Physiol 296:F10–24. doi:10.1152/ajprenal.90248.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Butterworth MB, Edinger RS, Johnson JP, Frizzell RA (2005) Acute ENaC stimulation by cAMP in a kidney cell line is mediated by exocytic insertion from a recycling channel pool. J Gen Physiol 125:81–101. doi:10.1085/jgp.200409124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Canessa CM, Horisberger JD, Rossier BC (1993) Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361:467–470. doi:10.1038/361467a0

    Article  CAS  PubMed  Google Scholar 

  11. Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC (1994) Amiloride-sensitive epithelial Na + channel is made of three homologous subunits. Nature 367:463–467. doi:10.1038/367463a0

    Article  CAS  PubMed  Google Scholar 

  12. Castillo M, Mulet J, Bernal JA, Criado M, Sala F, Sala S (2006) Improved gating of a chimeric alpha7-5HT3A receptor upon mutations at the M2-M3 extracellular loop. FEBS Lett 580:256–260. doi:10.1016/j.febslet.2005.12.010

    Article  CAS  PubMed  Google Scholar 

  13. Chang SS, Grunder S, Hanukoglu A, Rosler A, Mathew PM, Hanukoglu I, Schild L, Lu Y, Shimkets RA, Nelson-Williams C, Rossier BC, Lifton RP (1996) Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet 12:248–253. doi:10.1038/ng0396-248

    Article  CAS  PubMed  Google Scholar 

  14. Eaton DC, Helms MN, Koval M, Bao HF, Jain L (2009) The contribution of epithelial sodium channels to alveolar function in health and disease. Annu Rev Physiol 71:403–423. doi:10.1146/annurev.physiol.010908.163250

    Article  CAS  PubMed  Google Scholar 

  15. Firsov D, Schild L, Gautschi I, Merillat AM, Schneeberger E, Rossier BC (1996) Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: a quantitative approach. Proc Natl Acad Sci U S A 93:15370–15375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Giraldez T, Afonso-Oramas D, Cruz-Muros I, Garcia-Marin V, Pagel P, Gonzalez-Hernandez T, Alvarez de la Rosa D (2007) Cloning and functional expression of a new epithelial sodium channel delta subunit isoform differentially expressed in neurons of the human and monkey telencephalon. J Neurochem 102:1304–1315. doi:10.1111/j.1471-4159.2007.04622.x

    Article  CAS  PubMed  Google Scholar 

  17. Giraldez T, Rojas P, Jou J, Flores C, Alvarez de la Rosa D (2012) The epithelial sodium channel delta-subunit: new notes for an old song. Am J Physiol Renal Physiol 303:F328–338. doi:10.1152/ajprenal.00116.2012

    Article  CAS  PubMed  Google Scholar 

  18. Goldfarb SB, Kashlan OB, Watkins JN, Suaud L, Yan W, Kleyman TR, Rubenstein RC (2006) Differential effects of Hsc70 and Hsp70 on the intracellular trafficking and functional expression of epithelial sodium channels. Proc Natl Acad Sci U S A 103:5817–5822. doi:10.1073/pnas.0507903103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Han L, Campanucci VA, Cooke J, Salter MW (2013) Identification of a single amino acid in GluN1 that is critical for glycine-primed internalization of NMDA receptors. Mol Brain 6:36. doi:10.1186/1756-6606-6-36

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hughey RP, Bruns JB, Kinlough CL, Kleyman TR (2004) Distinct pools of epithelial sodium channels are expressed at the plasma membrane. J Biol Chem 279:48491–48494. doi:10.1074/jbc.C400460200

    Article  CAS  PubMed  Google Scholar 

  21. Jasti J, Furukawa H, Gonzales EB, Gouaux E (2007) Structure of acid-sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449:316–323. doi:10.1038/nature06163

    Article  CAS  PubMed  Google Scholar 

  22. Ji HL, Song W, Gao Z, Su XF, Nie HG, Jiang Y, Peng JB, He YX, Liao Y, Zhou YJ, Tousson A, Matalon S (2009) SARS-CoV proteins decrease levels and activity of human ENaC via activation of distinct PKC isoforms. Am J Physiol Lung Cell Mol Physiol 296:L372–383. doi:10.1152/ajplung.90437.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kabra R, Knight KK, Zhou R, Snyder PM (2008) Nedd4-2 induces endocytosis and degradation of proteolytically cleaved epithelial Na + channels. J Biol Chem 283:6033–6039. doi:10.1074/jbc.M708555200

    Article  CAS  PubMed  Google Scholar 

  24. Kasher R, Balass M, Scherf T, Fridkin M, Fuchs S, Katchalski-Katzir E (2001) Design and synthesis of peptides that bind alpha-bungarotoxin with high affinity. Chem Biol 8:147–155. doi:10.1016/S1074-5521(00)90063-2

    Article  CAS  PubMed  Google Scholar 

  25. Kleyman TR, Carattino MD, Hughey RP (2009) ENaC at the cutting edge: regulation of epithelial sodium channels by proteases. J Biol Chem 284:20447–20451. doi:10.1074/jbc.R800083200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kohl T, Lorinczi E, Pardo LA, Stuhmer W (2011) Rapid internalization of the oncogenic K+ channel K(V)10.1. PLoS One 6:e26329. doi:10.1371/journal.pone.0026329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lippincott-Schwartz J, Yuan L, Tipper C, Amherdt M, Orci L, Klausner RD (1991) Brefeldin A’s effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell 67:601–616. doi:10.1016/0092-8674(91)90534-6

    Article  CAS  PubMed  Google Scholar 

  28. Loffing J, Korbmacher C (2009) Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch 458:111–135. doi:10.1007/s00424-009-0656-0

    Article  CAS  PubMed  Google Scholar 

  29. Lu C, Pribanic S, Debonneville A, Jiang C, Rotin D (2007) The PY motif of ENaC, mutated in Liddle syndrome, regulates channel internalization, sorting and mobilization from subapical pool. Traffic 8:1246–1264. doi:10.1111/j.1600-0854.2007.00602.x

    Article  CAS  PubMed  Google Scholar 

  30. Macdonald JL, Pike LJ (2005) A simplified method for the preparation of detergent-free lipid rafts. J Lipid Res 46:1061–1067. doi:10.1194/jlr.D400041-JLR200

    Article  CAS  PubMed  Google Scholar 

  31. Miranda P, Manso DG, Barros F, Carretero L, Hughes TE, Alonso-Ron C, Dominguez P, de la Peña P (2008) FRET with multiply labeled HERG K(+) channels as a reporter of the in vivo coarse architecture of the cytoplasmic domains. Biochim Biophys Acta 1783:1681–1699. doi:10.1016/j.bbamcr.2008.06.009

    Article  CAS  PubMed  Google Scholar 

  32. Mohan S, Bruns JR, Weixel KM, Edinger RS, Bruns JB, Kleyman TR, Johnson JP, Weisz OA (2004) Differential current decay profiles of epithelial sodium channel subunit combinations in polarized renal epithelial cells. J Biol Chem 279:32071–32078. doi:10.1074/jbc.M405091200

    Article  CAS  PubMed  Google Scholar 

  33. Moise L, Liu J, Pryazhnikov E, Khiroug L, Jeromin A, Hawrot E (2010) K(V)4.2 channels tagged in the S1-S2 loop for alpha-bungarotoxin binding provide a new tool for studies of channel expression and localization. Channels (Austin) 4:115–123

    Article  CAS  Google Scholar 

  34. Ochoa GC, Slepnev VI, Neff L, Ringstad N, Takei K, Daniell L, Kim W, Cao H, McNiven M, Baron R, De Camilli P (2000) A functional link between dynamin and the actin cytoskeleton at podosomes. J Cell Biol 150:377–389. doi:10.1083/jcb.150.2.377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Palmer LG, Patel A, Frindt G (2012) Regulation and dysregulation of epithelial Na + channels. Clin Exp Nephrol 16:35–43. doi:10.1007/s10157-011-0496-z

    Article  CAS  PubMed  Google Scholar 

  36. Pochynyuk O, Medina J, Gamper N, Genth H, Stockand JD, Staruschenko A (2006) Rapid translocation and insertion of the epithelial Na + channel in response to RhoA signaling. J Biol Chem 281:26520–26527. doi:10.1074/jbc.M603716200

    Article  CAS  PubMed  Google Scholar 

  37. Pochynyuk O, Staruschenko A, Bugaj V, Lagrange L, Stockand JD (2007) Quantifying RhoA facilitated trafficking of the epithelial Na + channel toward the plasma membrane with total internal reflection fluorescence-fluorescence recovery after photobleaching. J Biol Chem 282:14576–14585. doi:10.1074/jbc.M701348200

    Article  CAS  PubMed  Google Scholar 

  38. Rossier BC, Pradervand S, Schild L, Hummler E (2002) Epithelial sodium channel and the control of sodium balance: interaction between genetic and environmental factors. Annu Rev Physiol 64:877–897. doi:10.1146/annurev.physiol.64.082101.143243

    Article  CAS  PubMed  Google Scholar 

  39. Sanders T, Hawrot E (2004) A novel pharmatope tag inserted into the beta4 subunit confers allosteric modulation to neuronal nicotinic receptors. J Biol Chem 279:51460–51465. doi:10.1074/jbc.M409533200

    Article  CAS  PubMed  Google Scholar 

  40. Schild L (2010) The epithelial sodium channel and the control of sodium balance. Biochim Biophys Acta 1802:1159–1165. doi:10.1016/j.bbadis.2010.06.014

    Article  CAS  PubMed  Google Scholar 

  41. Sekine-Aizawa Y, Huganir RL (2004) Imaging of receptor trafficking by using alpha-bungarotoxin-binding-site-tagged receptors. Proc Natl Acad Sci U S A 101:17114–17119. doi:10.1073/pnas.0407563101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shimkets RA, Lifton RP, Canessa CM (1997) The activity of the epithelial sodium channel is regulated by clathrin-mediated endocytosis. J Biol Chem 272:25537–25541. doi:10.1074/jbc.272.41.25537

    Article  CAS  PubMed  Google Scholar 

  43. Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M, Gill JR Jr, Ulick S, Milora RV, Findling JW et al (1994) Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 79:407–414. doi:10.1016/0092-8674(94)90250-X

    Article  CAS  PubMed  Google Scholar 

  44. Snyder PM (2000) Liddle’s syndrome mutations disrupt cAMP-mediated translocation of the epithelial Na(+) channel to the cell surface. J Clin Invest 105:45–53. doi:10.1172/JCI7869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Soundararajan R, Pearce D, Hughey RP, Kleyman TR (2010) Role of epithelial sodium channels and their regulators in hypertension. J Biol Chem 285:30363–30369. doi:10.1074/jbc.R110.155341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Staub O, Gautschi I, Ishikawa T, Breitschopf K, Ciechanover A, Schild L, Rotin D (1997) Regulation of stability and function of the epithelial Na + channel (ENaC) by ubiquitination. EMBO J 16:6325–6336. doi:10.1093/emboj/16.21.6325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stockand JD, Staruschenko A, Pochynyuk O, Booth RE, Silverthorn DU (2008) Insight toward epithelial Na + channel mechanism revealed by the acid-sensing ion channel 1 structure. IUBMB Life 60:620–628. doi:10.1002/iub.89

    Article  CAS  PubMed  Google Scholar 

  48. Svenningsen P, Friis UG, Bistrup C, Buhl KB, Jensen BL, Skott O (2011) Physiological regulation of epithelial sodium channel by proteolysis. Curr Opin Nephrol Hypertens 20:529–533. doi:10.1097/MNH.0b013e328348bcc7

    Article  CAS  PubMed  Google Scholar 

  49. Valentijn JA, Fyfe GK, Canessa CM (1998) Biosynthesis and processing of epithelial sodium channels in Xenopus oocytes. J Biol Chem 273:30344–30351

    Article  CAS  PubMed  Google Scholar 

  50. Volk KA, Husted RF, Sigmund RD, Stokes JB (2005) Overexpression of the epithelial Na + channel gamma subunit in collecting duct cells: interactions of Liddle’s mutations and steroids on expression and function. J Biol Chem 280:18348–18354. doi:10.1074/jbc.M413689200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Waldmann R, Champigny G, Bassilana F, Voilley N, Lazdunski M (1995) Molecular cloning and functional expression of a novel amiloride-sensitive Na + channel. J Biol Chem 270:27411–27414. doi:10.1074/jbc.270.46.27411

    Article  CAS  PubMed  Google Scholar 

  52. Watschinger K, Horak SB, Schulze K, Obermair GJ, Wild C, Koschak A, Sinnegger-Brauns MJ, Tampe R, Striessnig J (2008) Functional properties and modulation of extracellular epitope-tagged Ca(V)2.1 voltage-gated calcium channels. Channels (Austin) 2:461–473

    Article  Google Scholar 

  53. Wesch D, Althaus M, Miranda P, Cruz-Muros I, Fronius M, Gonzalez-Hernandez T, Clauss WG, Alvarez de la Rosa D, Giraldez T (2012) Differential N termini in epithelial Na + channel delta-subunit isoforms modulate channel trafficking to the membrane. Am J Physiol Cell Physiol 302:C868–879. doi:10.1152/ajpcell.00255.2011

    Article  CAS  PubMed  Google Scholar 

  54. Wesch D, Miranda P, Afonso-Oramas D, Althaus M, Castro-Hernandez J, Dominguez J, Morty RE, Clauss W, Gonzalez-Hernandez T, Alvarez de la Rosa D, Giraldez T (2010) The neuronal-specific SGK1.1 kinase regulates {delta}-epithelial Na + channel independently of PY motifs and couples it to phospholipase C signaling. Am J Physiol Cell Physiol 299:C779–790. doi:10.1152/ajpcell.00184.2010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Manuel Criado (Instituto de Neurociencias de Alicante) for his suggestion of using the bungarotoxin system to follow ENaC trafficking and for sharing the V201 construct and to Dr. Diana Wesch for performing preliminary FRAP experiments and transferrin stainings  in Xenopus oocytes. This work was funded by grants from Instituto de Salud Carlos III–Subdirectorate General for Evaluation and Promotion of Research Grants (project PI12/ 00428) and Spanish Ministry of Economy Grants Consolider-Ingenio CSD 2008–0005 and BFU2010-16265 and co-financed by the European Regional Development Funds, “A Way of Making Europe,” from the European Union. T.G. is funded by the Ramon y Cajal Program (Spanish Ministry of Economy, Spain). The confocal microscopy facility was supported partially by the Insular Council of Tenerife and grants MCT-FEDER 2003/2004 and IMBRAIN-FP7-REGPOT-2012-31637, awarded to the Institute of Biomedical Technologies and the Center of Biomedical Research of the Canary Islands at ULL.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diego Alvarez de la Rosa or Teresa Giraldez.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary information 1

(PDF 363 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Montelongo, R., Barros, F., Alvarez de la Rosa, D. et al. Plasma membrane insertion of epithelial sodium channels occurs with dual kinetics. Pflugers Arch - Eur J Physiol 468, 859–870 (2016). https://doi.org/10.1007/s00424-016-1799-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-016-1799-4

Keywords

Navigation