Skip to main content
Log in

A hyperpolarization-activated ion current of amphibian oocytes

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

A comparative analysis of a hyperpolarization-activated ion current present in amphibian oocytes was performed using the two-electrode voltage-clamp technique in Xenopus laevis, Xenopus tropicalis, and Ambystoma mexicanum. This current appears to be driven mainly by Cl ions, is independent of Ca2+, and is made evident by applying extremely negative voltage pulses; it shows a slow activating phase and little or no desensitization. The pharmacological profile of the current is complex. The different channel blocker used for Cl, K+, Na+ and Ca2+ conductances, exhibited various degrees of inhibition depending of the species. The profiles illustrate the intricacy of the components that give rise to this current. During X. laevis oogenesis, the hyperpolarization-activated current is present at all stages of oocytes tested (II–VI), and the amplitude of the current increases from about 50 nA in stage I to more than 1 μA in stage VI; nevertheless, there was no apparent modification of the kinetics. Our results suggest that the hyperpolarization-activated current is present both in order Anura and Urodela oocytes. However, the electrophysiological and pharmacological characteristics are quite perplexing and seem to suggest a mixture of ionic conductances that includes the activation of both anionic and cationic channels, most probably transiently opened due to the extreme hyperpolarizion of the plasma membrane. As a possible mechanism for the generation of the current, a kinetic model which fits the data suggests the opening of pores in the plasma membrane whose ion selectivity is dependent on the extracellular Cl concentration. The extreme voltage conditions could induce the opening of otherwise latent pores in plasma membrane proteins (i.e., carriers), resembling the ´slippage´ events already described for some carriers. These observations should be valuable for other groups trying to express cloned, voltage-dependent ion channels in oocytes of amphibian in which hyperpolarizing voltage pulses are applied to activate the channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

4-AP:

4-Aminopyridine

9-AC:

Anthracene-9-carboxylic acid

BAPTA:

1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid

DIDS:

4,4′-Diisothiocyanatostilbene, 2,2′-disulfonic acid disodium salt hydrate

DMSO:

Dimethyl sulfoxide

HEPES:

N-2-Hydroxyethylpiperazine-N′-2-ethanosulfonic acid

MES:

2-(N-Morpholino)ethanesulfonic acid

MS-222:

3-Aminobenzoic acid methyl ester

NFA:

Niflumic acid

NPPB:

5-Nitro-2(3-phenylpropylamino)benzoic acid

TEA:

Tetraethylammonium

TTX:

Tetrodotoxin

References

  1. Ackerman MJ, Wickman KD, Clapham DE (1994) Hypotonicity activates a native chloride current in Xenopus oocytes. J Gen Physiol 103:153–179

    Article  PubMed  CAS  Google Scholar 

  2. Alekov AK, Fahlke C (2009) Channel-like slippage modes in the human anion/proton exchanger ClC-4. J Gen Physiol 133:485–496

    Article  PubMed  CAS  Google Scholar 

  3. Baud C, Kado RT, Marcher K (1982) Sodium channels induced by depolarization of the Xenopus laevis oocyte. Proc Natl Acad Sci 79:3188–3192

    Article  PubMed  CAS  Google Scholar 

  4. De Santiago-Castillo JA, Covarrubias M, Sánchez-Rodríguez JE, Perez-Cornejo P, Arreola J (2010) Simulating complex ion channel kinetics with IonChannelLab. Channels (Austin) 4:422–428

    Article  Google Scholar 

  5. Gadsby DC, Takeuchi A, Artigas P, Reyes N (2009) Peering into an ATPase ion pump with single-channel recordings. Philos Trans R Soc Lond B Biol Sci 364:229–238

    Article  PubMed  CAS  Google Scholar 

  6. Hand M, Morrison R, Strange K (1997) Characterization of volume-sensitive organic osmolyte efflux and anion current in Xenopus oocytes. J Membr Biol 157:9–16

    Article  PubMed  CAS  Google Scholar 

  7. Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak I, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, Pollet N, Robert J, Salamov A, Sater AK, Schmutz J, Terry A, Vize PD, Warren WC, Wells D, Wills A, Wilson RK, Zimmerman LB, Zorn AM, Grainger R, Grammer T, Khokha MK, Richardson PM, Rokhsar DS (2010) The genome of the Western clawed frog Xenopus tropicalis. Science 5978:633–636

    Article  Google Scholar 

  8. Ivorra I, Morales A (1997) Membrane currents in immature oocytes of the Rana perezei frog. Pflugers Arch 4:413–421

    Article  Google Scholar 

  9. Kotsias BA, Damiano AE, Godoy S, Assef Y, Ibarra C, Cantiello HF (2002) Membrane currents in the oocyte of the toad Bufo arenarum. J Exp Zool 4:411–415

    Article  Google Scholar 

  10. Kowdley GC, Ackerman SJ, John JE, Jones LR, Moorman JR (1994) Hyperpolarization-activated chloride currents in Xenopus oocytes. J Gen Physiol 103:217–230

    Article  PubMed  CAS  Google Scholar 

  11. Kuruma A, Hirayama Y, Hartzell HC (2000) A hyperpolarization- and acid activated nonselective cation current in Xenopus oocytes. Am J Physiol 279:C1401–C1413

    Google Scholar 

  12. Lindenthal S, Schmieder S, Ehrenfeld J, Wills NK (1997) Cloning and functional expression of a ClC Cl channel from the renal cell line A6. Am J Physiol 273:C1176–C1185, Erratum in: Am J Physiol 1998 275

    PubMed  CAS  Google Scholar 

  13. Maulet Y, Lambert RC, Mykita S, Mouton J, Partisani M, Bailly Y, Bombarde G, Feltz A (1999) Expression and targeting to the plasma membrane of xClC-K, a chloride channel specifically expressed in distinct tubule segments of Xenopus laevis kidney. Biochem J 340:737–743

    Article  PubMed  CAS  Google Scholar 

  14. Miledi R (1982) A calcium-dependent transient outward current in Xenopus laevis oocytes. Proc R Soc Lond B 215:491–497

    Article  PubMed  CAS  Google Scholar 

  15. Parker I, Miledi R (1986) Changes in intracellular calcium and in membrane currents evoked by injection of inositol trisphosphate into Xenopus oocytes. Proc R Soc Lond B Biol Sci 228:307–315

    Article  PubMed  CAS  Google Scholar 

  16. Parker I, Miledi R (1987) Inositol trisphosphate activates a voltage-dependent calcium influx in Xenopus oocytes. Proc R Soc Lond B Biol Sci 231:27–36

    Article  PubMed  CAS  Google Scholar 

  17. Parker I, Miledi R (1987) Tetrodotoxin-sensitive sodium current in native Xenopus oocytes. Proc R Soc Lond B Biol Sci 22:289–296

    Article  Google Scholar 

  18. Parker I, Miledi R (1988) A calcium-independent chloride current activated by hyperpolarization in Xenopus oocytes. Proc R Soc Lond B Biol Sci 233:191–199

    Article  PubMed  CAS  Google Scholar 

  19. Parker I, Miledi R (1988) Transient potassium current in native Xenopus oocytes. Proc R Soc Lond B Biol Sci 234:45–53

    Article  PubMed  CAS  Google Scholar 

  20. Parodi J, Romero F, Miledi R, Martínez-Torres A (2008) Some effects of the venom of the Chilean spider Latrodectus mactans on endogenous ion-currents of Xenopus laevis oocytes. Biochem Biophys Res Commun 31:571–575

    Article  Google Scholar 

  21. Picollo A, Pusch M (2005) Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 436:420–423

    Article  PubMed  CAS  Google Scholar 

  22. Prangkio P, Yusko EC, Sept D, Yang J, Mayer M (2012) Multivariate analyses of amyloid-beta oligomer populations indicate a connection between pore formation and cytotoxicity. PLoS One 7:e47261

    Article  PubMed  CAS  Google Scholar 

  23. Qu Z, Wei RW, Mann W, Hartzell HC (2003) Two bestrophins cloned from Xenopus laevis oocytes express Ca2+-activated Cl currents. J Biol Chem 278:49563–49572

    Article  PubMed  CAS  Google Scholar 

  24. Rychkov GY, Pusch M, Astill DS, Roberts ML, Jentsch TJ, Bretag AH (1996) Concentration and pH dependence of skeletal muscle chloride channel ClC-1. J Physiol 497:423–435

    PubMed  CAS  Google Scholar 

  25. Schroeder BC, Cheng T, Jan YN, Jan LY (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134:1019–1029

    Article  PubMed  CAS  Google Scholar 

  26. Sha Q, Lansbery KL, Distefano D, Mercer RW, Nichols CG (2001) Heterologous expression of the Na(+), K(+)-ATPase gamma subunit in Xenopus oocytes induces an endogenous, voltage-gated large diameter pore. J Physiol 2:407–417

    Article  Google Scholar 

  27. Shimbo K, Brassard DL, Lamb RA, Pinto LH (1995) Viral and cellular small integral membrane proteins can modify ion channels endogenous to Xenopus oocytes. Biophys J 5:1819–1829

    Article  Google Scholar 

  28. Smith LD, Xu WL, Varnold RL (1991) Oogenesis and oocyte isolation. Methods Cell Biol 36:45–60

    Article  PubMed  CAS  Google Scholar 

  29. Sobczak K, Bangel-Ruland N, Leier G, Weber WM (2010) Endogenous transport systems in the Xenopus laevis oocyte plasma membrane. Methods 51:183–189

    Article  PubMed  CAS  Google Scholar 

  30. Suvitayavat W, Palfrey HC, Haas M, Dunham PB, Kalmar F, Rao MC (1994) Characterization of the endogenous Na(+)-K(+)-2Cl cotransporter in Xenopus oocytes. Am J Physiol 266:C284–C292

    PubMed  CAS  Google Scholar 

  31. Terhag J, Cavara NA, Hollmann M (2010) Cave Canalem: how endogenous ion channels may interfere with heterologous expression in Xenopus oocytes. Methods 51:66–74

    Article  PubMed  CAS  Google Scholar 

  32. Tokimasa T, North RA (1996) Effects of barium, lanthanum and gadolinium on endogenous chloride and potassium currents in Xenopus oocytes. J Physiol 496:677–686

    PubMed  CAS  Google Scholar 

  33. Tucker SJ, Tannahill D, Higgins CF (1992) Identification and developmental expression of the Xenopus laevis cystic fibrosis transmembrane conductance regulator gene. Hum Mol Genet 1:77–82

    Article  PubMed  CAS  Google Scholar 

  34. Tzounopoulos T, Maylie J, Adelman JP (1995) minK channels form by assembly of at least 14 subunits. Proc Natl Acad Sci U S A 21:9593–9597

    Article  Google Scholar 

  35. Webb DJ, Nuccitelli R (1985) Fertilization potential and electrical properties of Xenopus laevis egg. Dev Biol 107:395–406

    Article  PubMed  CAS  Google Scholar 

  36. Weber W-M (1999) Ion currents of Xenopus laevis oocytes: state of the art. Biochim Biophys Acta 1421:213–233

    Article  PubMed  CAS  Google Scholar 

  37. Weber W-M, Schwarz W, Passow H (1989) Endogenous d-glucose transport in oocytes of Xenopus laevis. J Membr Biol 111:93–102

    Article  PubMed  CAS  Google Scholar 

  38. Zhang Y, Hamill OP (2000) Calcium-, voltage- and osmotic stress-sensitive currents in Xenopus oocytes and their relationship to single mechanically gated channels. J Physiol 523:83–99

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank E. Ruiz Alcibar and E. Espino Saldaña for technical support. This work was supported by grants from CONACYT (101851), PAPIIT-UNAM (IN202609 and IN205308). DBSS received a fellowship from CONACYT and was supported by Posgrado en Ciencias Biomédicas-UNAM. Dr. D. D. Pless edited the original manuscript and we are grateful for her critical reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Martinez-Torres.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochoa-de la Paz, L.D., Salazar-Soto, D.B., Reyes, J.P. et al. A hyperpolarization-activated ion current of amphibian oocytes. Pflugers Arch - Eur J Physiol 465, 1087–1099 (2013). https://doi.org/10.1007/s00424-013-1231-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1231-2

Keywords

Navigation