Skip to main content

Advertisement

Log in

Resurgent-like currents in mouse vas deferens myocytes are mediated by NaV1.6 voltage-gated sodium channels

  • Muscle physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Patch-clamp experiments were performed to investigate the molecular properties of resurgent-like currents in single smooth muscle cells dispersed from mouse vas deferens, utilizing both NaV1.6-null mice (NaV1.6−/−), lacking the expression of the Scn8a Na+ channel gene, and their wild-type littermates (NaV1.6+/+). NaV1.6 immunoreactivity was clearly visible in dispersed smooth muscle cells obtained from NaV1.6+/+, but not NaV1.6−/−, vas deferens. Following a depolarization to +30 mV from a holding potential of −70 mV (to produce maximal inactivation of the Na+ current), repolarization to voltages between −60 and +20 mV elicited a tetrodotoxin (TTX)-sensitive inward current in NaV1.6+/+, but not NaV1.6−/−, vas deferens myocytes. The resurgent-like current in NaV1.6+/+ vas deferens myocytes peaked at approximately −20 mV in the current–voltage relationship. The peak amplitude of the resurgent-like current remained at a constant level when the membrane potential was repolarized to −20 mV following the application of depolarizing rectangular pulses to more positive potentials than +20 mV. 4,9-Anhydrotetrodotoxin (4,9-anhydroTTX), a selective NaV1.6 blocking toxin, purified from a crude mixture of TTX analogues by LC-FLD techniques, reversibly suppressed the resurgent-like currents. β-Pompilidotoxin, a voltage-gated Na+ channel activator, evoked sustained resurgent-like currents in NaV1.6+/+ but not NaV1.6−/− murine vas deferens myocytes. These results strongly indicate that, primarily, resurgent-like currents are generated as a result of NaV1.6 channel activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

4,9-anhydroTTX:

4,9-Anhydrotetrodotoxin

BSA:

Bovine serum albumin

DAPI:

4′,6-Diamidino-2-phenylindole

EJPs:

Excitatory junction potentials

HEPES:

N-[2-Hydroxyethyl]piperazine-N′-[2-ethanesulfonic acid]

I Na :

Transient voltage-gated Na+ currents

LC-FLD:

Liquid chromatography-fluorescent detection

med :

Motor end-plate disease

NaV channel:

Voltage-gated Na+ channel

NMDG+ :

N-Methyl- d-glucamine

PBS:

Phosphate-buffered saline

PSS:

Physiological salt solution

TEA:

Tetraethylammonium

Tris:

Tris(hydroxymethyl)methylammonium chloride

Triton-X:

Polyoxyethylene-p-isooctylphenol

TTX:

Tetrodotoxin

References

  1. Afshari FS, Ptak K, Khaliq ZM, Grieco TM, Slater NT, McCrimmon DR, Raman IM (2004) Resurgent Na currents in four classes of neurons of the cerebellum. J Neurophysiol 92:2831–2843

    Article  PubMed  CAS  Google Scholar 

  2. Brock JA, Handelsman DJ, Keast JR (2007) Postnatal androgen deprivation dissociates the development of smooth muscle innervation from functional neurotransmission in mouse vas deferens. J Physiol 581:665–678

    Article  PubMed  CAS  Google Scholar 

  3. Catterall WA, Goldin AL, Waxman SG (2005) International Union of Pharmacology: XLVII. Nomenclature and structure–function relationships of voltage-gated sodium channels. Pharmacol Rev 57:397–409

    Article  PubMed  CAS  Google Scholar 

  4. Crill WE (1996) Persistent sodium current in mammalian central neurons. Annu Rev Physiol 58:349–362

    Article  PubMed  CAS  Google Scholar 

  5. Cummins TR, Dib-Hajj SD, Herzog RI, Waxman SG (2005) Nav1.6 channels generate resurgent sodium currents in spinal sensory neurons. FEBS Lett 579:2166–2170

    Article  PubMed  CAS  Google Scholar 

  6. Do MT, Bean BP (2003) Subthreshold sodium currents and pacemaking of subthalamic neurons: modulation by slow inactivation. Neuron 39:109–120

    Article  PubMed  CAS  Google Scholar 

  7. Do MT, Bean BP (2004) Sodium currents in subthalamic nucleus neurons from NaV1.6-null mice. J Neurophysiol 92:726–733

    Article  PubMed  CAS  Google Scholar 

  8. Gittis AH, du Lac S (2008) Similar properties of transient, persistent, and resurgent Na currents in GABAergic and non-GABAergic vestibular nucleus neurons. J Neurophysiol 99:2060–2065

    Article  PubMed  Google Scholar 

  9. Grieco TM, Malhotra JD, Chen C, Isom LL, Raman IM (2005) Open-channel block by the cytoplasmic tail of sodium channel beta4 as a mechanism for resurgent sodium current. Neuron 45:233–244

    Article  PubMed  CAS  Google Scholar 

  10. Grieco TM, Raman IM (2004) Production of resurgent current in NaV1.6-null Purkinje neurons by slowing sodium channel inactivation with beta-pompilidotoxin. J Neurosci 24:35–42

    Article  PubMed  CAS  Google Scholar 

  11. Hille B (2001) Classical biophysics of the squid giant axon. In: Hille B (ed) Ionic channels of excitable membranes, 3rd edn. Sinauer Associates Inc., Massachusetts, pp 25–60

    Google Scholar 

  12. Holman ME, Taylor GS, Tomita T (1977) Some properties of the smooth muscle of mouse vas deferens. J Physiol 266:751–764

    PubMed  CAS  Google Scholar 

  13. Jarecki BW, Piekarz AD, Jackson JO 2nd, Cummins TR (2010) Human voltage-gated sodium channel mutations that cause inherited neuronal and muscle channelopathies increase resurgent sodium currents. J Clin Invest 120:369–378

    Article  PubMed  CAS  Google Scholar 

  14. Kalume F, Yu FH, Westenbroek RE, Scheuer T, Catterall WA (2007) Reduced sodium current in Purkinje neurons from NaV1.1 mutant mice: implications for ataxia in severe myoclonic epilepsy in infancy. J Neurosci 27:11065–11074

    Article  PubMed  CAS  Google Scholar 

  15. Kinoshita E, Maejima H, Yamaoka K, Konno K, Kawai N, Shimizu E, Yokote S, Nakayama H, Seyama I (2001) Nobel wasp toxin discriminates between neuronal and cardiac sodium channels. Mol Pharmacol 59:1457–1463

    PubMed  CAS  Google Scholar 

  16. Kohrman DC, Harris JB, Meisler MH (1996) Mutation detection in the med and med J alleles of the sodium channel Scn8a. Unusual splicing due to a minor class AT–AC intron. J Biol Chem 271:17576–17581

    Article  PubMed  CAS  Google Scholar 

  17. Levin SI, Khaliq ZM, Aman TK, Grieco TM, Kearney JA, Raman IM, Meisler MH (2006) Impaired motor function in mice with cell-specific knockout of sodium channel Scn8a (NaV1.6) in cerebellar Purkinje neurons and granule cells. J Neurophysiol 96:785–793

    Article  PubMed  CAS  Google Scholar 

  18. Meisler MH, Kearney J, Escayg A, MacDonald BT, Sprunger LK (2001) Sodium channels and neurological disease: insights from Scn8a mutations in the mouse. Neuroscientist 7:136–145

    Article  PubMed  CAS  Google Scholar 

  19. Mercer JN, Chan CS, Tkatch T, Held J, Surmeier DJ (2007) NaV1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons. J Neurosci 27:13552–13566

    Article  PubMed  CAS  Google Scholar 

  20. Nakamura M, Yasumoto T (1985) Tetrodotoxin derivatives in puffer fish. Toxicon 23:271–276

    Article  PubMed  CAS  Google Scholar 

  21. Pan F, Beam KG (1999) The absence of resurgent sodium current in mouse spinal neurons. Brain Res 849:162–168

    Article  PubMed  CAS  Google Scholar 

  22. Raman IM, Bean BP (1997) Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. J Neurosci 17:4517–4526

    PubMed  CAS  Google Scholar 

  23. Raman IM, Gustafson AE, Padgett D (2000) Ionic currents and spontaneous firing in neurons isolated from the cerebellar nuclei. J Neurosci 20:9004–9016

    PubMed  CAS  Google Scholar 

  24. Raman IM, Sprunger LK, Meisler MH, Bean BP (1997) Altered subthreshold sodium currents and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice. Neuron 19:881–891

    Article  PubMed  CAS  Google Scholar 

  25. Rosker C, Lohberger B, Hofer D, Steinecker B, Quasthoff S, Schreibmayer W (2007) The TTX metabolite 4,9-anhydro-TTX is a highly specific blocker of the NaV1.6 voltage-dependent sodium channel. Am J Physiol Cell Physiol 293:C783–C789

    Article  PubMed  CAS  Google Scholar 

  26. Shoji Y, Yotsu-Yamashita M, Miyazawa T, Yasumoto T (2001) Electrospray ionization mass spectrometry of tetrodotoxin and its analogs: liquid chromatography/mass spectrometry, tandem mass spectrometry, and liquid chromatography/tandem mass spectrometry. Anal Biochem 290:10–17

    Article  PubMed  CAS  Google Scholar 

  27. Smith MR, Smith RD, Plummer NW, Meisler MH, Goldin AL (1998) Functional analysis of the mouse Scn8a sodium channel. J Neurosci 18:6093–6102

    PubMed  CAS  Google Scholar 

  28. Teramoto N, Brading AF (1996) Activation by levcromakalim and metabolic inhibition of glibenclamide-sensitive K channels in smooth muscle cells of pig proximal urethra. Br J Pharmacol 118:635–642

    Article  PubMed  CAS  Google Scholar 

  29. Yasumoto T, Michishita T (1985) Fluorometric determination of tetrodotoxin by high performance liquid chromatography. Agric Biol Chem 49:3077–3080

    Article  CAS  Google Scholar 

  30. Yotsu-Yamashita M, Goto A, Nakagawa T (2005) Identification of 4-S-cysteinyltetrodotoxin from the liver of the puffer fish, Fugu pardalis, and formation of thiol adducts of tetrodotoxin from 4,9-anhydrotetrodotoxin. Chem Res Toxicol 18:865–871

    Article  PubMed  CAS  Google Scholar 

  31. Zhu HL, Aishima M, Morinaga H, Wassall RD, Shibata A, Iwasa K, Nomura M, Nagao M, Sueishi K, Cunnane TC, Teramoto N (2008) Molecular and biophysical properties of voltage-gated Na+ channels in murine vas deferens. Biophys J 94:3340–3351

    Article  PubMed  CAS  Google Scholar 

  32. Zhu HL, Shibata A, Inai T, Nomura M, Shibata Y, Brock JA, Teramoto N (2010) Characterization of NaV1.6-mediated Na+ currents in smooth muscle cells isolated from mouse vas deferens. J Cell Physiol 223:234–243

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Funding Program for Next Generation World-Leading Researcher (Noriyoshi Teramoto, Grant Number LS096; Mari Yotsu-Yamashita, Grant Number LS012) from the Japanese Society for the Promotion of Science. We thank Dr. Stevan Rakovic (OxProfs, Oxford, UK) for his helpful discussion and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyoshi Teramoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teramoto, N., Zhu, HL., Yotsu-Yamashita, M. et al. Resurgent-like currents in mouse vas deferens myocytes are mediated by NaV1.6 voltage-gated sodium channels. Pflugers Arch - Eur J Physiol 464, 493–502 (2012). https://doi.org/10.1007/s00424-012-1153-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1153-4

Keywords

Navigation