Skip to main content
Log in

The TRPM8 ion channel comprises direct Gq protein-activating capacity

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The transient receptor potential (TRP) family of ion channels comprises receptors that are activated by a vast variety of physical as well as chemical stimuli. TRP channels interact in a complex manner with several intracellular signaling cascades, both up- and downstream of receptor activation. Investigating cascades stimulated downstream of the cold and menthol receptor TRPM8, we found evidence for both, functional and structural interaction of TRPM8 with Gαq. We demonstrated menthol-evoked increase in intracellular Ca2+ under extracellular Ca2+-free conditions, which was blocked by the PLC inhibitors U73122 or edelfosine. This metabotropic Ca2+ signal could be observed also in cells expressing a channel-dead (i.e. non-conducting) or a chloride-conducting TRPM8 pore mutant. However, this intracellular metabotropic Ca2+ signal could not be detected in Gαq deficient cells or in the presence of dominant-negative GαqX. Evidence for a close spatial proximity necessary for physical interaction of TRPM8 and Gαq was provided by acceptor bleaching experiments demonstrating FRET between TRPM8-CFP and Gαq-YFP. A Gαq-YFP mobility assay (FRAP) revealed a restricted diffusion of Gαq-YFP under conditions when TRPM8 is immobilized in the plasma membrane. Moreover, a menthol-induced and TRPM8-mediated G protein activation could be demonstrated by FRET experiments monitoring the dissociation of Gαq-YFP from a Gβ/Gγ-CFP complex, and by the exchange of radioactive [35S]GTPγS for GDP. Our observations lead to a view that extends the operational range of the TRPM8 receptor from its function as a pure ion channel to a molecular switch with additional metabotropic capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Albert AP (2011) Gating mechanisms of canonical transient receptor potential channel proteins: role of phosphoinositols and diacylglycerol. Adv Exp Med Biol 704:391–411

    Article  PubMed  Google Scholar 

  2. Allen V, Swigart P, Cheung R, Cockcroft S, Katan M (1997) Regulation of inositol lipid-specific phospholipase cdelta by changes in Ca2+ ion concentrations. Biochem J 327(Pt 2):545–552

    PubMed  CAS  Google Scholar 

  3. Bandell M, Story G, Hwang S, Viswanath V, Eid S, Petrus M, Earley T, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857

    Article  PubMed  CAS  Google Scholar 

  4. Bautista D, Jordt S, Nikai T, Tsuruda P, Read A, Poblete J, Yamoah E, Basbaum A, Julius D (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124:1269–1282

    Article  PubMed  CAS  Google Scholar 

  5. Behrendt H, Germann T, Gillen C, Hatt H, Jostock R (2004) Characterization of the mouse cold-menthol receptor TRPM8 and vanilloid receptor type-1 VR1 using a fluorometric imaging plate reader (FLIPR) assay. Br J Pharmacol 141:737–745

    Article  PubMed  CAS  Google Scholar 

  6. Blumer J, Smrcka A, Lanier S (2007) Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling. Pharmacol Ther 113:488–506

    Article  PubMed  CAS  Google Scholar 

  7. Clapham D (2003) TRP channels as cellular sensors. Nature 426:517–524

    Article  PubMed  CAS  Google Scholar 

  8. Daniels R, Takashima Y, McKemy D (2009) Activity of the neuronal cold sensor TRPM8 is regulated by phospholipase C via the phospholipid phosphoinositol 4,5-bisphosphate. J Biol Chem 284:1570–1582

    Article  PubMed  CAS  Google Scholar 

  9. Digby G, Lober R, Sethi P, Lambert N (2006) Some G protein heterotrimers physically dissociate in living cells. Proc Natl Acad Sci U S A 103:17789–17794

    Article  PubMed  CAS  Google Scholar 

  10. Doerner J, Gisselmann G, Hatt H, Wetzel C (2007) Transient receptor potential channel A1 is directly gated by calcium ions. J Biol Chem 282:13180–13189

    Article  PubMed  CAS  Google Scholar 

  11. Dowling M, Nahorski S, Challiss R (2004) Measurement of agonist-stimulated [35S]GTPgammaS binding to assess total G-protein and Galpha-subtype-specific activation by G-protein-coupled receptors. Methods Mol Biol 259:197–206

    PubMed  CAS  Google Scholar 

  12. Dziedzicka-Wasylewska M, Faron-Górecka A, Andrecka J, Polit A, Kuśmider M, Wasylewski Z (2006) Fluorescence studies reveal heterodimerization of dopamine D1 and D2 receptors in the plasma membrane. Biochemistry 45:8751–8759

    Article  PubMed  CAS  Google Scholar 

  13. Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gústafsdóttir SM, Ostman A, Landegren U (2002) Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20:473–477

    Article  PubMed  CAS  Google Scholar 

  14. Gullberg M, Gústafsdóttir SM, Schallmeiner E, Jarvius J, Bjarnegård M, Betsholtz C, Landegren U, Fredriksson S (2004) Cytokine detection by antibody-based proximity ligation. Proc Natl Acad Sci U S A 101:8420–8424

    Article  PubMed  CAS  Google Scholar 

  15. He T, Zhou S, da Costa L, Yu J, Kinzler K, Vogelstein B (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95:2509–2514

    Article  PubMed  CAS  Google Scholar 

  16. Hein P, Frank M, Hoffmann C, Lohse M, Bünemann M (2005) Dynamics of receptor/G protein coupling in living cells. EMBO J 24:4106–4114

    Article  PubMed  CAS  Google Scholar 

  17. Hein P, Rochais F, Hoffmann C, Dorsch S, Nikolaev V, Engelhardt S, Berlot C, Lohse M, Bünemann M (2006) Gs activation is time-limiting in initiating receptor-mediated signaling. J Biol Chem 281:33345–33351

    Article  PubMed  CAS  Google Scholar 

  18. Hofmann T, Chubanov V, Gudermann T, Montell C (2003) TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel. Curr Biol 13:1153–1158

    Article  PubMed  CAS  Google Scholar 

  19. Horowitz L, Hirdes W, Suh B, Hilgemann D, Mackie K, Hille B (2005) Phospholipase C in living cells: activation, inhibition, Ca2+ requirement, and regulation of M current. J Gen Physiol 126:243–262

    Article  PubMed  CAS  Google Scholar 

  20. Karpova T, Baumann C, He L, Wu X, Grammer A, Lipsky P, Hager G, McNally J (2003) Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. J Microsc 209:56–70

    Article  PubMed  CAS  Google Scholar 

  21. Kim Y, Park T, Lee Y, Baek K, Suh P, Ryu S, Kim K (1999) Phospholipase C-delta1 is activated by capacitative calcium entry that follows phospholipase C-beta activation upon bradykinin stimulation. J Biol Chem 274:26127–26134

    Article  PubMed  CAS  Google Scholar 

  22. Kim D, Cavanaugh E, Simkin D (2008) Inhibition of transient receptor potential A1 channel by phosphatidylinositol-4,5-bisphosphate. Am J Physiol Cell Physiol 295:C92–C99

    Article  PubMed  CAS  Google Scholar 

  23. Kremers G, Goedhart J, van Munster E, Gadella TJ (2006) Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Förster radius. Biochemistry 45:6570–6580

    Article  PubMed  CAS  Google Scholar 

  24. Kühn F, Knop G, Lückhoff A (2007) The transmembrane segment S6 determines cation versus anion selectivity of TRPM2 and TRPM8. J Biol Chem 282:27598–27609

    Article  PubMed  Google Scholar 

  25. Lukacs V, Thyagarajan B, Varnai P, Balla A, Balla T, Rohacs T (2007) Dual regulation of TRPV1 by phosphoinositides. J Neurosci 27:7070–7080

    Article  PubMed  CAS  Google Scholar 

  26. Mahieu F, Owsianik G, Verbert L, Janssens A, De Smedt H, Nilius B, Voets T (2007) TRPM8-independent menthol-induced Ca2+ release from endoplasmic reticulum and Golgi. J Biol Chem 282:3325–3336

    Article  PubMed  CAS  Google Scholar 

  27. McKemy D, Neuhausser W, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    Article  PubMed  CAS  Google Scholar 

  28. Mergler S, Strowski M, Kaiser S, Plath T, Giesecke Y, Neumann M, Hosokawa H, Kobayashi S, Langrehr J, Neuhaus P, Plöckinger U, Wiedenmann B, Grötzinger C (2007) Transient receptor potential channel TRPM8 agonists stimulate calcium influx and neurotensin secretion in neuroendocrine tumor cells. Neuroendocrinology 85:81–92

    Article  PubMed  CAS  Google Scholar 

  29. Miyawaki A (2003) Visualization of the spatial and temporal dynamics of intracellular signaling. Dev Cell 4:295–305

    Article  PubMed  CAS  Google Scholar 

  30. Nilius B, Owsianik G, Voets T (2008) Transient receptor potential channels meet phosphoinositides. EMBO J 27:2809–2816

    Article  PubMed  CAS  Google Scholar 

  31. Obukhov A, Harteneck C, Zobel A, Harhammer R, Kalkbrenner F, Leopoldt D, Lückhoff A, Nürnberg B, Schultz G (1996) Direct activation of trpl cation channels by G alpha11 subunits. EMBO J 15:5833–5838

    PubMed  CAS  Google Scholar 

  32. Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    Article  PubMed  CAS  Google Scholar 

  33. Prawitt D, Monteilh-Zoller M, Brixel L, Spangenberg C, Zabel B, Fleig A, Penner R (2003) TRPM5 is a transient Ca2 +− activated cation channel responding to rapid changes in [Ca2+]i. Proc Natl Acad Sci U S A 100:15166–15171

    Article  PubMed  CAS  Google Scholar 

  34. Prevarskaya N, Zhang L, Barritt G (2007) TRP channels in cancer. Biochim Biophys Acta 1772:937–946

    PubMed  CAS  Google Scholar 

  35. Qin F (2007) Regulation of TRP ion channels by phosphatidylinositol-4,5-bisphosphate. Handb Exp Pharmacol 179:509–525

    Google Scholar 

  36. Rhee S (2001) Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70:281–312

    Article  PubMed  CAS  Google Scholar 

  37. Rohacs T (2007) Regulation of TRP channels by PIP(2). Pflugers Arch 453:753–762

    Article  PubMed  CAS  Google Scholar 

  38. Rohacs T, Nilius B (2007) Regulation of transient receptor potential (TRP) channels by phosphoinositides. Pflugers Arch 455:157–168

    Article  PubMed  CAS  Google Scholar 

  39. Ruiz-Velasco V, Ikeda S (2001) Functional expression and FRET analysis of green fluorescent proteins fused to G-protein subunits in rat sympathetic neurons. J Physiol 537:679–692

    Article  PubMed  CAS  Google Scholar 

  40. Sato M, Blumer J, Simon V, Lanier S (2006) Accessory proteins for G proteins: partners in signaling. Annu Rev Pharmacol Toxicol 46:151–187

    Article  PubMed  CAS  Google Scholar 

  41. Spehr M, Wetzel C, Hatt H, Ache B (2002) 3-phosphoinositides modulate cyclic nucleotide signaling in olfactory receptor neurons. Neuron 33:731–739

    Article  PubMed  CAS  Google Scholar 

  42. Spehr J, Spehr M, Hatt H, Wetzel C (2004) Subunit-specific P2X-receptor expression defines chemosensory properties of trigeminal neurons. Eur J Neurosci 19:2497–2510

    Article  PubMed  Google Scholar 

  43. Stauffer T, Ahn S, Meyer T (1998) Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol 8:343–346

    Article  PubMed  CAS  Google Scholar 

  44. Takashima Y, Daniels R, Knowlton W, Teng J, Liman E, McKemy D (2007) Diversity in the neural circuitry of cold sensing revealed by genetic axonal labeling of transient receptor potential melastatin 8 neurons. J Neurosci 27:14147–14157

    Article  PubMed  CAS  Google Scholar 

  45. Thompson A, Mostafapour S, Denlinger L, Bleasdale J, Fisher S (1991) The aminosteroid U-73122 inhibits muscarinic receptor sequestration and phosphoinositide hydrolysis in SK-N-SH neuroblastoma cells. A role for Gp in receptor compartmentation. J Biol Chem 266:23856–23862

    PubMed  CAS  Google Scholar 

  46. Tsavaler L, Shapero M, Morkowski S, Laus R (2001) Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res 61:3760–3769

    PubMed  CAS  Google Scholar 

  47. Tsuzuki K, Xing H, Ling J, Gu JG (2004) Menthol-induced Ca2+ release from presynaptic Ca2+ stores potentiates sensory synaptic transmission. J Neurosci 24:762–771

    Article  PubMed  CAS  Google Scholar 

  48. Várnai P, Balla T (1998) Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J Cell Biol 143:501–510

    Article  PubMed  Google Scholar 

  49. Voets T, Nilius B (2007) Modulation of TRPs by PIPs. J Physiol 582:939–944

    Article  PubMed  CAS  Google Scholar 

  50. Vogt S, Grosse R, Schultz G, Offermanns S (2003) Receptor-dependent RhoA activation in G12/G13-deficient cells: genetic evidence for an involvement of Gq/G11. J Biol Chem 278:28743–28749

    Article  PubMed  CAS  Google Scholar 

  51. Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424:434–438

    Article  PubMed  CAS  Google Scholar 

  52. Wisnoskey BJ, Sinkins WG, Schilling WP (2003) Activation of vanilloid receptor type I in the endoplasmic reticulum fails to activate store-operated Ca2+ entry. Biochem J 372:517–528

    Article  PubMed  CAS  Google Scholar 

  53. Woo D, Jung S, Zhu M, Park C, Kim Y, Oh S, Lee C (2008) Direct activation of transient receptor potential vanilloid 1(TRPV1) by diacylglycerol (DAG). Mol Pain 4:42

    Article  PubMed  Google Scholar 

  54. Yu B, Simon M (1998) Interaction of the xanthine nucleotide binding Goalpha mutant with G protein-coupled receptors. J Biol Chem 273:30183–30188

    Article  PubMed  CAS  Google Scholar 

  55. Yu B, Gu L, Simon M (2000) Inhibition of subsets of G protein-coupled receptors by empty mutants of G protein alpha subunits in g(o), G(11), and G(16). J Biol Chem 275:71–76

    Article  PubMed  CAS  Google Scholar 

  56. Yudin Y, Lukacs V, Cao C, Rohacs T (2011) Decrease in phosphatidylinositol 4,5-bisphosphate levels mediates desensitization of the cold sensor TRPM8 channels. J Physiol 589:6007–6027

    Article  PubMed  CAS  Google Scholar 

  57. Zufall F, Hatt H, Firestein S (1993) Rapid application and removal of second messengers to cyclic nucleotide-gated channels from olfactory epithelium. Proc Natl Acad Sci U S A 90:9335–9339

    Article  PubMed  CAS  Google Scholar 

  58. Zurborg S, Yurgionas B, Jira J, Caspani O, Heppenstall P (2007) Direct activation of the ion channel TRPA1 by Ca2+. Nat Neurosci 10:277–279

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank J. Gerkrath and H. Bartel for technical assistance and S. Wiese for support and discussion. We thank G. Owsianik and B. Nilius (Leuven) for providing anti-TRPM8 and S. Offermanns (Heidelberg) for mouse embryonic fibroblasts. We are grateful to A. Wittinghofer and A. Kortholt (Dortmund) for help with the radioligand assay. This work was supported by the German Research Foundation (DFG) through a grant to CHW (WE2298/4-1) and the German National Academic Foundation to KK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian H. Wetzel.

Additional information

Katharina Klasen and Dominik Hollatz contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klasen, K., Hollatz, D., Zielke, S. et al. The TRPM8 ion channel comprises direct Gq protein-activating capacity. Pflugers Arch - Eur J Physiol 463, 779–797 (2012). https://doi.org/10.1007/s00424-012-1098-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1098-7

Keywords

Navigation