Skip to main content
Log in

Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The membrane-spanning part of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel comprises 12 transmembrane (TM) α-helices, arranged into two pseudo-symmetrical groups of six. While TM6 in the N-terminal TMs is known to line the pore and to make an important contribution to channel properties, much less is known about its C-terminal counterpart, TM12. We have used patch clamp recording to investigate the accessibility of cytoplasmically applied cysteine-reactive reagents to cysteines introduced along the length of TM12 in a cysteine-less variant of CFTR. We find that methanethiosulfonate (MTS) reagents irreversibly modify cysteines substituted for TM12 residues N1138, M1140, S1141, T1142, Q1144, W1145, V1147, N1148, and S1149 when applied to the cytoplasmic side of open channels. Cysteines sensitive to internal MTS reagents were not modified by extracellular [2-(trimethylammonium)ethyl] MTS, consistent with MTS reagent impermeability. Both S1141C and T1142C could be modified by intracellular [2-sulfonatoethyl] MTS prior to channel activation; however, N1138C and M1140C, located deeper into the pore from its cytoplasmic end, were modified only after channel activation. Comparison of these results with previous work on CFTR-TM6 allows us to develop a model of the relative positions, functional contributions, and alignment of these two important TMs lining the CFTR pore. We also propose a mechanism by which these seemingly structurally symmetrical TMs make asymmetric contributions to the functional properties of the channel pore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Akabas MH (1998) Channel-lining residues in the M3 membrane-spanning segment of the cystic fibrosis transmembrane conductance regulator. Biochemistry 37:12233–12240

    Article  PubMed  CAS  Google Scholar 

  2. Akabas MH, Kaufmann C, Cook TA, Archdeacon P (1994) Amino acid residues lining the chloride channel of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 269:14865–14868

    PubMed  CAS  Google Scholar 

  3. Alexander C, Ivetac A, Liu X, Norimatsu Y, Serrano JR, Landstrom A, Sansom M, Dawson DC (2009) Cystic fibrosis transmembrane conductance regulator: using differential reactivity toward channel-permeant and channel-impermeant thiol-reactive probes to test a molecular model for the pore. Biochemistry 48:10078–10088

    Article  PubMed  CAS  Google Scholar 

  4. Bai Y, Li M, Hwang T-C (2010) Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation. J Gen Physiol 136:293–309

    Article  PubMed  CAS  Google Scholar 

  5. Beck EJ, Yang Y, Yaemsiri S, Raghuram V (2008) Conformational changes in a pore-lining helix coupled to cystic fibrosis transmembrane conductance regulator channel gating. J Biol Chem 283:4957–4966

    Article  PubMed  CAS  Google Scholar 

  6. Chen EY, Bartlett MC, Loo TW, Clarke DM (2004) The ΔF508 mutation disrupts packing of the transmembrane segments of the cystic fibrosis transmembrane conductance regulator. J Biol Chem 279:39620–39627

    Article  PubMed  CAS  Google Scholar 

  7. Cheung M, Akabas MH (1996) Identification of cystic fibrosis transmembrane conductance regulator channel-lining residues in and flanking the M6 membrane-spanning segment. Biophys J 70:2688–2695

    Article  PubMed  CAS  Google Scholar 

  8. Cui L, Aleksandrov L, Hou Y-X, Gentzsch M, Chen J-H, Riordan JR, Aleksandrov AA (2006) The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating. J Physiol 572:347–358

    Article  PubMed  CAS  Google Scholar 

  9. El Hiani Y, Linsdell P (2010) Changes in accessibility of cytoplasmic substances to the pore associated with activation of the cystic fibrosis transmembrane conductance regulator chloride channel. J Biol Chem 285:32126–32140

    Article  PubMed  CAS  Google Scholar 

  10. Fatehi M, Linsdell P (2008) State-dependent access of anions to the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Biol Chem 283:6102–6109

    Article  PubMed  CAS  Google Scholar 

  11. Fatehi M, Linsdell P (2009) Novel residues lining the CFTR chloride channel pore identified by functional modification of introduced cysteines. J Membr Biol 228:151–164

    Article  PubMed  CAS  Google Scholar 

  12. Gadsby DC, Vergani P, Csanády L (2006) The ABC protein turned chloride channel whose failure causes cystic fibrosis. Nature 440:477–483

    Article  PubMed  CAS  Google Scholar 

  13. Ge N, Muise CN, Gong X, Linsdell P (2004) Direct comparison of the functional roles played by different transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Biol Chem 279:55283–55289

    Article  PubMed  CAS  Google Scholar 

  14. Gong X, Linsdell P (2003) Mutation-induced blocker permeability and multiion block of the CFTR chloride channel pore. J Gen Physiol 122:673–687

    Article  PubMed  CAS  Google Scholar 

  15. Gupta J, Evagelidis A, Hanrahan JW, Linsdell P (2001) Asymmetric structure of the cystic fibrosis transmembrane conductance regulator chloride channel pore suggested by mutagenesis of the twelfth transmembrane region. Biochemistry 40:6620–6627

    Article  PubMed  CAS  Google Scholar 

  16. Gupta J, Linsdell P (2002) Point mutations in the pore region directly or indirectly affect glibenclamide block of the CFTR chloride channel. Pflügers Arch 443:739–747

    Article  PubMed  CAS  Google Scholar 

  17. Kidd JF, Kogan I, Bear CE (2004) Molecular basis for the chloride channel activity of cystic fibrosis transmembrane conductance regulator and the consequences of disease-causing mutations. Curr Top Dev Biol 60:215–249

    Article  PubMed  CAS  Google Scholar 

  18. Kos V, Ford RC (2009) The ATP-binding cassette family: a structural perspective. Cell Mol Life Sci 66:3111–3126

    Article  PubMed  CAS  Google Scholar 

  19. Li M-S, Demsey AFA, Qi J, Linsdell P (2009) Cysteine-independent inhibition of the CFTR chloride channel by the cysteine-reactive reagent sodium (2-sulphonatoethyl) methanethiosulphonate (MTSES). Brit J Pharmacol 157:1065–1071

    Article  CAS  Google Scholar 

  20. Linsdell P (2001) Relationship between anion binding and anion permeability revealed by mutagenesis within the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Physiol 531:51–66

    Article  PubMed  CAS  Google Scholar 

  21. Linsdell P (2005) Location of a common inhibitor binding site in the cytoplasmic vestibule of the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Biol Chem 280:8945–8950

    Article  PubMed  CAS  Google Scholar 

  22. Linsdell P (2006) Mechanism of chloride permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. Exp Physiol 91:123–129

    Article  PubMed  CAS  Google Scholar 

  23. Linsdell P, Gong X (2002) Multiple inhibitory effects of Au(CN) 2 ions on cystic fibrosis transmembrane conductance regulator Cl channel currents. J Physiol 540:29–38

    Article  PubMed  CAS  Google Scholar 

  24. Linsdell P, Hanrahan JW (1996) Disulphonic stilbene block of cystic fibrosis transmembrane conductance regulator Cl channels expressed in a mammalian cell line and its regulation by a critical pore residue. J Physiol 496:687–693

    PubMed  CAS  Google Scholar 

  25. Linsdell P, Hanrahan JW (1998) Adenosine triphosphate-dependent asymmetry of anion permeation in the cystic fibrosis transmembrane conductance regulator chloride channel. J Gen Physiol 111:601–614

    Article  PubMed  CAS  Google Scholar 

  26. Linsdell P, Evagelidis A, Hanrahan JW (2000) Molecular determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator chloride channel pore. Biophys J 78:2973–2982

    Article  PubMed  CAS  Google Scholar 

  27. Linsdell P, Zheng S-X, Hanrahan JW (1998) Non-pore lining amino acid side chains influence anion selectivity of the human CFTR Cl channel expressed in mammalian cell lines. J Physiol 512:1–16

    Article  PubMed  CAS  Google Scholar 

  28. Locher KP (2009) Structure and mechanism of ATP-binding cassette transporters. Phil Trans R Soc B 364:239–245

    Article  PubMed  CAS  Google Scholar 

  29. McCarty NA (2000) Permeation through the CFTR chloride channel. J Exp Biol 203:1947–1962

    PubMed  CAS  Google Scholar 

  30. McCarty NA, Zhang Z-R (2001) Identification of a region of strong discrimination in the pore of CFTR. Am J Physiol 281:L852–L867

    CAS  Google Scholar 

  31. McDonough S, Davidson N, Lester HA, McCarty NA (1994) Novel pore-lining residues in CFTR that govern permeation and open-channel block. Neuron 13:623–634

    Article  PubMed  CAS  Google Scholar 

  32. Mense M, Vergani P, White DM, Altberg G, Nairn AC, Gadsby DC (2006) In vivo phosphorylation of CFTR promotes formation of a nucleotide-binding domain heterodimer. EMBO J 25:4728–4739

    Article  PubMed  CAS  Google Scholar 

  33. Mio K, Ogura T, Mio M, Shimizu H, Hwang T-C, Sato C, Sohma Y (2008) Three-dimensional reconstruction of human cystic fibrosis transmembrane conductance regulator chloride channel revealed an ellipsoidal structure with orifices beneath the putative transmembrane domain. J Biol Chem 283:30300–30310

    Article  PubMed  CAS  Google Scholar 

  34. Mornon J-P, Lehn P, Callebaut I (2008) Atomic model of human cystic fibrosis transmembrane conductance regulator: membrane-spanning domains and coupling interfaces. Cell Mol Life Sci 65:2594–2612

    Article  PubMed  CAS  Google Scholar 

  35. Mornon J-P, Lehn P, Callebaut I (2009) Molecular models of the open and closed states of the whole human CFTR protein. Cell Mol Life Sci 66:3469–3486

    Article  PubMed  CAS  Google Scholar 

  36. Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nature Rev Mol Cell Biol 10:218–227

    Article  CAS  Google Scholar 

  37. Serohijos AWR, Hegedüs T, Aleksandrov AA, He L, Cui L, Dokholyan NV, Riordan JR (2008) Phenylalanine-508 mediates a cytoplasmic-membrane domain contact in the CFTR 3D crystal structure crucial to assembly and channel function. Proc Natl Acad Sci USA 105:3256–3261

    Article  PubMed  CAS  Google Scholar 

  38. Sheppard DN, Travis SM, Ishihara H, Welsh MJ (1996) Contribution of proline residues in the membrane-spanning domains of cystic fibrosis transmembrane conductance regulator to chloride channel function. J Biol Chem 271:14995–15001

    Article  PubMed  CAS  Google Scholar 

  39. St. Aubin CN, Linsdell P (2006) Positive charges at the intracellular mouth of the pore regulate anion conduction in the CFTR chloride channel. J Gen Physiol 128:535–545

    Article  CAS  Google Scholar 

  40. Vankeerberghen A, Wei L, Teng H, Jaspers M, Cassiman J-J, Nilius B, Cuppens H (1998) Characterization of mutations located in exon 18 of the CFTR gene. FEBS Lett 437:1–4

    Article  PubMed  CAS  Google Scholar 

  41. Wang W, El Hiani Y, Linsdell P (2011) Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore. J Gen Physiol. doi:10.1085/jgp.201110605

  42. Zhang L, Aleksandrov LA, Zhao Z, Birtley JR, Riordan JR, Ford RC (2009) Architecture of the cystic fibrosis transmembrane conductance regulator protein and structural changes associated with phosphorylation and nucleotide binding. J Struct Biol 167:242–251

    Article  PubMed  CAS  Google Scholar 

  43. Zhang Z-R, Zeltwanger S, McCarty NA (2000) Direct comparison of NPPB and DPC as probes of CFTR expressed in Xenopus oocytes. J Membr Biol 175:35–52

    Article  PubMed  CAS  Google Scholar 

  44. Zhou J-J, Fatehi M, Linsdell P (2008) Identification of positive charges situated at the outer mouth of the CFTR chloride channel pore. Pflügers Arch 457:351–360

    Article  PubMed  CAS  Google Scholar 

  45. Zhou J-J, Li M-S, Qi J, Linsdell P (2010) Regulation of conductance by the number of fixed positive charges in the intracellular vestibule of the CFTR chloride channel pore. J Gen Physiol 135:229–245

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Canadian Institutes of Health Research and Cystic Fibrosis Canada (CFC). Yassine El Hiani is a CFC postdoctoral fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Linsdell.

Additional information

F. Qian and Y. El Hiani contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, F., El Hiani, Y. & Linsdell, P. Functional arrangement of the 12th transmembrane region in the CFTR chloride channel pore based on functional investigation of a cysteine-less CFTR variant. Pflugers Arch - Eur J Physiol 462, 559–571 (2011). https://doi.org/10.1007/s00424-011-0998-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-0998-2

Keywords

Navigation