Skip to main content

Advertisement

Log in

In vivo imaging analysis of the interaction between unusually large von Willebrand factor multimers and platelets on the surface of vascular wall

  • Cardiovascular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

To elucidate how unusually large von Willebrand factor (UL-VWF) multimers facilitate thrombus formation, their behavior was analyzed together with that of platelets in living mice deficient in the gene encoding the protease that cleaves UL-VWF, a disintegrin-like and metalloprotease with thrombospondin type 1 motif 13 (ADAMTS13−/−). By crossing ADAMTS13−/− mice with green fluorescent protein-expressing transgenic mice (GFP mice), GFP-ADAMTS13−/− mice were obtained. The dynamics of GFP-expressing platelets were monitored employing intravital confocal fluorescent microscopy. Administration of a vasopressin derivative, DDAVP, a secretagogue of VWF increased the number of platelets adhered to vascular endothelial cells (VECs) on mesentery at sites recognized by an anti-VWF antibody. Some of these platelets were interconnected and aligned as beads on a string. They reached their maximum length at 5 min and were longer in GFP-ADAMTS13−/− mice than in GFP mice (5.3 ± 4.3, N = 6 vs 2.9 ± 2.1 μm, N = 4) (mean±SE). Focal injury of VECs by topical application of FeCl3 developed longer (25, 3–50 vs 10, 2–25 μm, P < 0.01) (mean, 10th–90th percentile) and more stable (1.3, 0.3–6.3 vs 0.3, 0.2–1.3 s, P < 0.01) connected platelets in GFP-ADAMTS13−/− mice than in GFP mice. This study revealed that ADAMTS13 cleaves platelet-bound UL-VWF multimers, both during their secretion from VECs and after their adherence to injured vascular walls in veins. UL-VWF multimers either being secreted from VECs or circulating in plasma of ADAMTS13−/− mice appeared to facilitate the accumulation of longer and more stable VWF strings with more associated platelets on injured vascular walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andrews RK, Berndt MC (2008) Platelet adhesion: a game of catch and release. J Clin Invest 118(9):3009–3011

    PubMed  CAS  Google Scholar 

  2. Aoki T, Tomiyama Y, Honda S, Mihara K, Yamanaka T, Okubo M, Moriguchi A, Mutoh S (2005) Association of the antagonism of von Willebrand factor but not fibrinogen by platelet alphaIIbbeta3 antagonists with prolongation of bleeding time. J Thromb Haemost 3(10):2307–2314

    Article  PubMed  CAS  Google Scholar 

  3. Asada Y, Sumiyoshi A, Hayashi T, Suzumiya J, Kaketani K (1985) Immunohistochemistry of vascular lesion in thrombotic thrombocytopenic purpura, with special reference to factor VIII related antigen. Thromb Res 38(5):469–479

    Article  PubMed  CAS  Google Scholar 

  4. Banno F, Chauhan AK, Kokame K, Yang J, Miyata S, Wagner DD, Miyata T (2009) The distal carboxyl-terminal domains of ADAMTS13 are required for regulation of in vivo thrombus formation. Blood 113(21):5323–5329

    Article  PubMed  CAS  Google Scholar 

  5. Banno F, Chauhan AK, Miyata T (2010) The function of ADAMTS13 in thrombogenesis in vivo: insights from mutant mice. Int J Hematol 91(1):30–35

    Article  PubMed  CAS  Google Scholar 

  6. Banno F, Kokame K, Okuda T, Honda S, Miyata S, Kato H, Tomiyama Y, Miyata T (2006) Complete deficiency in ADAMTS13 is prothrombotic, but it alone is not sufficient to cause thrombotic thrombocytopenic purpura. Blood 107(8):3161–3166

    Article  PubMed  CAS  Google Scholar 

  7. Bovenschen N, Herz J, Grimbergen JM, Lenting PJ, Havekes LM, Mertens K, van Vlijmen BJ (2003) Elevated plasma factor VIII in a mouse model of low-density lipoprotein receptor-related protein deficiency. Blood 101(10):3933–3939

    Article  PubMed  CAS  Google Scholar 

  8. Buzza MS, Dyson JM, Choi H, Gardiner EE, Andrews RK, Kaiserman D, Mitchell CA, Berndt MC, Dong JF, Bird PI (2008) Antihemostatic activity of human granzyme B mediated by cleavage of von Willebrand factor. J Biol Chem 283(33):22498–22504

    Article  PubMed  CAS  Google Scholar 

  9. Chauhan AK, Goerge T, Schneider SW, Wagner DD (2007) Formation of platelet strings and microthrombi in the presence of ADAMTS-13 inhibitor does not require P-selectin or beta3 integrin. J Thromb Haemost 5(3):583–589

    Article  PubMed  CAS  Google Scholar 

  10. Chauhan AK, Motto DG, Lamb CB, Bergmeier W, Dockal M, Plaimauer B, Scheiflinger F, Ginsburg D, Wagner DD (2006) Systemic antithrombotic effects of ADAMTS13. J Exp Med 203(3):767–776

    Article  PubMed  CAS  Google Scholar 

  11. Coller BS, Shattil SJ (2008) The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend. Blood 112(8):3011–3025

    Article  PubMed  CAS  Google Scholar 

  12. De Marco L, Girolami A, Zimmerman TS, Ruggeri ZM (1986) von Willebrand factor interaction with the glycoprotein IIb/IIa complex. Its role in platelet function as demonstrated in patients with congenital afibrinogenemia. J Clin Invest 77(4):1272–1277

    Article  PubMed  Google Scholar 

  13. Dent JA, Galbusera M, Ruggeri ZM (1991) Heterogeneity of plasma von Willebrand factor multimers resulting from proteolysis of the constituent subunit. J Clin Invest 88(3):774–782

    Article  PubMed  CAS  Google Scholar 

  14. Donadelli R, Orje JN, Capoferri C, Remuzzi G, Ruggeri ZM (2006) Size regulation of von Willebrand factor-mediated platelet thrombi by ADAMTS13 in flowing blood. Blood 107(5):1943–1950

    Article  PubMed  CAS  Google Scholar 

  15. Dong JF (2005) Cleavage of ultra-large von Willebrand factor by ADAMTS-13 under flow conditions. J Thromb Haemost 3(8):1710–1716

    Article  PubMed  CAS  Google Scholar 

  16. Dong JF, Moake JL, Nolasco L, Bernardo A, Arceneaux W, Shrimpton CN, Schade AJ, McIntire LV, Fujikawa K, Lopez JA (2002) ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood 100(12):4033–4039

    Article  PubMed  CAS  Google Scholar 

  17. Falati S, Gross P, Merrill-Skoloff G, Furie BC, Furie B (2002) Real-time in vivo imaging of platelets, tissue factor and fibrin during arterial thrombus formation in the mouse. Nat Med 8(10):1175–1181

    Article  PubMed  CAS  Google Scholar 

  18. Furlan M (1996) Von Willebrand factor: molecular size and functional activity. Ann Hematol 72(6):341–348

    Article  PubMed  CAS  Google Scholar 

  19. Furlan M, Robles R, Galbusera M, Remuzzi G, Kyrle PA, Brenner B, Krause M, Scharrer I, Aumann V, Mittler U, Solenthaler M, Lammle B (1998) von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. N Engl J Med 339(22):1578–1584

    Article  PubMed  CAS  Google Scholar 

  20. Hayashi T, Mogami H, Murakami Y, Nakamura T, Kanayama N, Konno H, Urano T (2008) Real-time analysis of platelet aggregation and procoagulant activity during thrombus formation in vivo. Pflugers Archiv 456(6):1239–1251

    Article  PubMed  CAS  Google Scholar 

  21. Huizinga EG, Tsuji S, Romijn RA, Schiphorst ME, de Groot PG, Sixma JJ, Gros P (2002) Structures of glycoprotein Ibalpha and its complex with von Willebrand factor A1 domain. Science 297(5584):1176–1179

    Article  PubMed  CAS  Google Scholar 

  22. Kaufmann JE, Oksche A, Wollheim CB, Gunther G, Rosenthal W, Vischer UM (2000) Vasopressin-induced von Willebrand factor secretion from endothelial cells involves V2 receptors and cAMP. J Clin Invest 106(1):107–116

    Article  PubMed  CAS  Google Scholar 

  23. Kurz KD, Main BW, Sandusky GE (1990) Rat model of arterial thrombosis induced by ferric chloride. Thromb Res 60(4):269–280

    Article  PubMed  CAS  Google Scholar 

  24. Levy GG, Nichols WC, Lian EC, Foroud T, McClintick JN, McGee BM, Yang AY, Siemieniak DR, Stark KR, Gruppo R, Sarode R, Shurin SB, Chandrasekaran V, Stabler SP, Sabio H, Bouhassira EE, Upshaw JD Jr, Ginsburg D, Tsai HM (2001) Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 413(6855):488–494

    Article  PubMed  CAS  Google Scholar 

  25. Mannucci PM (1997) Desmopressin (DDAVP) in the treatment of bleeding disorders: the first 20 years. Blood 90(7):2515–2521

    PubMed  CAS  Google Scholar 

  26. Masini E, Di Bello MG, Raspanti S, Fomusi Ndisang J, Baronti R, Cappugi P, Mannaioni PF (1998) The role of histamine in platelet aggregation by physiological and immunological stimuli. Inflamm Res 47(5):211–220

    Article  PubMed  CAS  Google Scholar 

  27. Matsui H, Sugimoto M, Mizuno T, Tsuji S, Miyata S, Matsuda M, Yoshioka A (2002) Distinct and concerted functions of von Willebrand factor and fibrinogen in mural thrombus growth under high shear flow. Blood 100(10):3604–3610

    Article  PubMed  CAS  Google Scholar 

  28. Michaux G, Abbitt KB, Collinson LM, Haberichter SL, Norman KE, Cutler DF (2006) The physiological function of von Willebrand's factor depends on its tubular storage in endothelial Weibel-Palade bodies. Dev Cell 10(2):223–232

    Article  PubMed  CAS  Google Scholar 

  29. Moake JL, Rudy CK, Troll JH, Weinstein MJ, Colannino NM, Azocar J, Seder RH, Hong SL, Deykin D (1982) Unusually large plasma factor VIII:von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med 307(23):1432–1435

    Article  PubMed  CAS  Google Scholar 

  30. Moake JL, Turner NA, Stathopoulos NA, Nolasco LH, Hellums JD (1986) Involvement of large plasma von Willebrand factor (vWF) multimers and unusually large vWF forms derived from endothelial cells in shear stress-induced platelet aggregation. J Clin Invest 78(6):1456–1461

    Article  PubMed  CAS  Google Scholar 

  31. Motto DG, Chauhan AK, Zhu G, Homeister J, Lamb CB, Desch KC, Zhang W, Tsai HM, Wagner DD, Ginsburg D (2005) Shigatoxin triggers thrombotic thrombocytopenic purpura in genetically susceptible ADAMTS13-deficient mice. J Clin Invest 115(10):2752–2761

    Article  PubMed  CAS  Google Scholar 

  32. Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y (1997) ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett 407(3):313–319

    Article  PubMed  CAS  Google Scholar 

  33. Raife TJ, Cao W, Atkinson BS, Bedell B, Montgomery RR, Lentz SR, Johnson GF, Zheng XL (2009) Leukocyte proteases cleave von Willebrand factor at or near the ADAMTS13 cleavage site. Blood 114(8):1666–1674

    Article  PubMed  CAS  Google Scholar 

  34. Rieger M, Ferrari S, Kremer Hovinga JA, Konetschny C, Herzog A, Koller L, Weber A, Remuzzi G, Dockal M, Plaimauer B, Scheiflinger F (2006) Relation between ADAMTS13 activity and ADAMTS13 antigen levels in healthy donors and patients with thrombotic microangiopathies (TMA). Thromb Haemost 95(2):212–220

    PubMed  CAS  Google Scholar 

  35. Ruggeri ZM (2002) Platelets in atherothrombosis. Nat Med 8(11):1227–1234

    Article  PubMed  CAS  Google Scholar 

  36. Ruggeri ZM, Ware J (1993) von Willebrand factor. FASEB J 7(2):308–316

    PubMed  CAS  Google Scholar 

  37. Sadler JE (2005) von Willebrand factor: two sides of a coin. J Thromb Haemost 3(8):1702–1709

    Article  PubMed  CAS  Google Scholar 

  38. Savage B, Saldivar E, Ruggeri ZM (1996) Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84(2):289–297

    Article  PubMed  CAS  Google Scholar 

  39. Singh I, Shankaran H, Beauharnois ME, Xiao Z, Alexandridis P, Neelamegham S (2006) Solution structure of human von Willebrand factor studied using small angle neutron scattering. J Biol Chem 281(50):38266–38275

    Article  PubMed  CAS  Google Scholar 

  40. Soejima K, Mimura N, Hirashima M, Maeda H, Hamamoto T, Nakagaki T, Nozaki C (2001) A novel human metalloprotease synthesized in the liver and secreted into the blood: possibly, the von Willebrand factor-cleaving protease? J Biochem 130(4):475–480

    PubMed  CAS  Google Scholar 

  41. Sporn LA, Marder VJ, Wagner DD (1986) Inducible secretion of large, biologically potent von Willebrand factor multimers. Cell 46(2):185–190

    Article  PubMed  CAS  Google Scholar 

  42. Tsai HM, Lian EC (1998) Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med 339(22):1585–1594

    Article  PubMed  CAS  Google Scholar 

  43. Uemura M, Tatsumi K, Matsumoto M, Fujimoto M, Matsuyama T, Ishikawa M, Iwamoto TA, Mori T, Wanaka A, Fukui H, Fujimura Y (2005) Localization of ADAMTS13 to the stellate cells of human liver. Blood 106(3):922–924

    Article  PubMed  CAS  Google Scholar 

  44. Wagner DD, Olmsted JB, Marder VJ (1982) Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells. J Cell Biol 95(1):355–360

    Article  PubMed  CAS  Google Scholar 

  45. Woollard KJ, Sturgeon S, Chin-Dusting JP, Salem HH, Jackson SP (2009) Erythrocyte hemolysis and hemoglobin oxidation promote ferric chloride induced vascular injury. J Biol Chem 284(19):13110–13118

    Article  PubMed  CAS  Google Scholar 

  46. Zhang X, Halvorsen K, Zhang CZ, Wong WP, Springer TA (2009) Mechanoenzymatic cleavage of the ultralarge vascular protein von Willebrand factor. Science 324(5932):1330–1334

    Article  PubMed  CAS  Google Scholar 

  47. Zhang Q, Zhou YF, Zhang CZ, Zhang X, Lu C, Springer TA (2009) Structural specializations of A2, a force-sensing domain in the ultralarge vascular protein von Willebrand factor. Proc Natl Acad Sci USA 106(23):9226–9231

    Article  PubMed  CAS  Google Scholar 

  48. Zheng X, Chung D, Takayama TK, Majerus EM, Sadler JE, Fujikawa K (2001) Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J Biol Chem 276(44):41059–41063

    Article  PubMed  CAS  Google Scholar 

  49. Zhou W, Inada M, Lee TP, Benten D, Lyubsky S, Bouhassira EE, Gupta S, Tsai HM (2005) ADAMTS13 is expressed in hepatic stellate cells. Lab Invest 85(6):780–788

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS) (to T.U., Y.S., H.M., F.B., and T.M.), the Ministry of Health, Labor, and Welfare of Japan (to T.M.), the Japan Society for the Promotion of Science (to T.M.), the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biochemical Innovation of Japan (to T.M.), the Smoking Research Foundation (to T.U.), and a scholarship to M.R. from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Conflicts of interest

The authors declare that there are no conflicts of interest associated with study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsumei Urano.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 24 kb)

Supplementary Fig. 1

(JPG 41.9 kb)

High resolution image file (TIFF 2.86 mb)

Supplementary Fig. 2

(JPG 50.5 kb)

High resolution image file (TIFF 1.48 mb)

Supplemental movie

(MOV 1.31mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rybaltowski, M., Suzuki, Y., Mogami, H. et al. In vivo imaging analysis of the interaction between unusually large von Willebrand factor multimers and platelets on the surface of vascular wall. Pflugers Arch - Eur J Physiol 461, 623–633 (2011). https://doi.org/10.1007/s00424-011-0958-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-011-0958-x

Keywords

Navigation