Skip to main content
Log in

Inactivation of L-type calcium channels is determined by the length of the N terminus of mutant β1 subunits

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Voltage-dependent calcium channel (Cav) pores are modulated by cytosolic β subunits. Four β-subunit genes and their splice variants offer a wide structural array for tissue- or disease-specific biophysical gating phenotypes. For instance, the length of the N terminus of β2 subunits has major effects on activation and inactivation rates. We tested whether a similar mechanism principally operates in a β1 subunit. Wild-type β1a subunit (N terminus length 60 aa) and its newly generated N-terminal deletion mutants (51, 27 and 18 aa) were examined within recombinant L-type calcium channel complexes (Cav1.2 and α2δ2) in HEK293 cells at the whole-cell and single-channel level. Whole-cell currents were enhanced by co-transfection of the full-length β1a subunit and by all truncated constructs. Voltage dependence of steady-state activation and inactivation did not depend on N terminus length, but inactivation rate was diminished by N terminus truncation. This was confirmed at the single-channel level, using ensemble average currents. Additionally, gating properties were estimated by Markov modeling. In confirmation of the descriptive analysis, inactivation rate, but none of the other transition rates, was reduced by shortening of the β1a subunit N terminus. Our study shows that the length-dependent mechanism of modulating inactivation kinetics of β2 calcium channel subunits can be confirmed and extended to the β1 calcium channel subunit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bezanilla F (2000) The voltage sensor in voltage-dependent ion channels. Physiol Rev 80:555–592

    CAS  PubMed  Google Scholar 

  2. Chanda B, Asamoah OK, Bezanilla F (2004) Coupling interactions between voltage sensors of the sodium channel as revealed by site-specific measurements. J Gen Physiol 123:217–230

    Article  CAS  PubMed  Google Scholar 

  3. Chanda B, Bezanilla F (2002) Tracking voltage-dependent conformational changes in skeletal muscle sodium channel during activation. J Gen Physiol 120:629–645

    Article  CAS  PubMed  Google Scholar 

  4. Chen YH, Li MH, Zhang Y, He LL, Yamada Y, Fitzmaurice A, Shen Y, Zhang H, Tong L, Yang J (2004) Structural basis of the alpha1-beta subunit interaction of voltage-gate Ca2+ channels. Nature 429:675–680

    Article  CAS  PubMed  Google Scholar 

  5. Chien AJ, Gao T, Perez-Reyes E, Hosey MM (1998) Membrane targeting of L-type calcium channels. Role of palmitoylation in the subcellular localization of the β2a subunit. J Biol Chem 273:23590–23597

    Article  CAS  PubMed  Google Scholar 

  6. Colecraft HM, Alseikhan B, Takahashi SX, Chaudhuri D, Mittman S, Yegnasubramanian V, Alvania RS, Johns DC, Marban E, Yue DT (2002) Novel functional properties of Ca2+ channel β subunits revealed by their expression in adult rat heart cells. J Physiol (Lond) 541:435–452

    Article  CAS  Google Scholar 

  7. Gründemann D, Schömig E (1996) Protection of DNA during preparative agarose gel electrophoresis against damage induced by ultraviolet light. BioTechniques 21:898–903

    PubMed  Google Scholar 

  8. Harry JB, Kobrinsky E, Abernethy DR, Soldatov NM (2004) New short splice variants of the human cardiac Cavbeta2 subunit: redefining the major functional motifs implemented in modulation of the Cav1.2 channel. J Biol Chem 279:46367–46372

    Article  CAS  PubMed  Google Scholar 

  9. He LL, Zhang Y, Chen YH, Yamada Y, Yang J (2007) Functional modularity of the β-subunit of voltage-gated Ca2+ channels. Biophys J 93:834–845

    Article  CAS  PubMed  Google Scholar 

  10. Herzig S, Khan IFY, Gründemann D, Matthes J, Ludwig A, Michels G, Hoppe UC, Chaudhuri D, Schwartz A, Yue DT, Hullin R (2007) Mechanism of Cav1.2 channel modulation by the amino terminus of cardiac β2-subunits. FASEB J 21:1527–1538

    Article  CAS  PubMed  Google Scholar 

  11. Hidalgo P, Gonzalez-Gutierrez G, Garcia-Olivares J, Neely A (2006) The alpha1-beta subunit interaction that modulates calcium channel activity is reversible and requires a competent alpha-interaction domain. J Biol Chem 281:24104–24110

    Article  CAS  PubMed  Google Scholar 

  12. Hidalgo P, Neely A (2007) Multiplicity of protein interactions and functions of the voltage-gated calcium channel beta-subunit. Cell Calcium 42:389–396

    Article  CAS  PubMed  Google Scholar 

  13. Hullin R, Khan IFY, Wirtz S, Mohacsi P, Varadi G, Schwartz A, Herzig S (2003) Cardiac L-type calcium channel β-subunits expressed in human heart have differential effects on single channel characteristics. J Biol Chem 278:21623–21630

    Article  CAS  PubMed  Google Scholar 

  14. Hullin R, Matthes J, von Vietinghoff S, Bodi I, Rubio M, D’Souza K, Khan IF, Rottländer D, Hoppe UC, Mohacsi P, Schmitteckert E, Gilsbach R, Bünemann M, Hein L, Schwartz A, Herzig S (2007) Increased expression of the auxiliary β2-subunit of ventricular L-type Ca2+ channels leads to single-channel activity characteristic of heart-failure. PLoS ONE 2(3):e292

    Article  PubMed  Google Scholar 

  15. Kanevsky N, Dascal N (2006) Regulation of maximal open probability is a separable function of Cavβ subunit in L-type Ca2+ channel, dependent on NH2 terminus of α1C (Cav1.2α). J Gen Physiol 128:15–36

    Article  CAS  PubMed  Google Scholar 

  16. Kobrinsky E, Kepplinger KJ, Yu A, Harry JB, Kahr H, Romanin C, Abernethy DR, Soldatov NM (2004) Voltage-gated rearrangements associated with differential β-subunit modulation of the L-type Ca2+ channel inactivation. Biophys J 87:844–857

    Article  CAS  PubMed  Google Scholar 

  17. Kuzmenkin A, Bezanilla F, Correa AM (2004) Gating of bacterial sodium channel, NAChBac: Voltage-dependent charge movement and gating currents. J Gen Physiol 124:349–356

    Article  CAS  PubMed  Google Scholar 

  18. Kuzmenkin A, Hang C, Kuzmenkina E, Jurkat-Rott K (2007) Gating of the HypoPP-1 mutation: I. Mutant-specific effects and cooperativity. Pflugers Arch 454:495–505

    Article  CAS  PubMed  Google Scholar 

  19. Kuzmenkin A, Hang C, Kuzmenkina E, Jurkat-Rott K (2007) Gating of the HypoPP-1 mutation: II. Effects of a calcium-channel agonist BayK 8644. Pflugers Arch 454:605–614

    Article  CAS  PubMed  Google Scholar 

  20. Leroy J, Richards MS, Butcher AJ, Nieto-Rostro M, Pratt WS, Davies A, Dolphin AC (2005) Interaction via a key tryptophan in the I-II linker of N-type calcium channels is required for β1 but not for palmitoylated β2, implicating an additional binding site in the regulation of channel voltage- dependent properties. J Neurosci 25:6984–6996

    Article  CAS  PubMed  Google Scholar 

  21. Ma J, González A, Chen R (1996) Fast activation of dihydropyridine-sensitive calcium channels of sketetal muscle. J Gen Physiol 108:221–232

    Article  CAS  PubMed  Google Scholar 

  22. Olcese R, Qin N, Schneider T, Neely A, Wei X, Stefani E, Birnbaumer L (1994) The amino terminus of a calcium channel β subunit sets rates of channel inactivation independently of the subunit’s effect on activation. Neuron 13:1433–1438

    Article  CAS  PubMed  Google Scholar 

  23. Qin N, Platano D, Olcese R, Costantin JL, Stefani E, Birnbaumer L (1998) Unique regulatory properties of the type 2a Ca2+ channel β subunit caused by palmitoylation. Proc Natl Acad Sci USA 95:4690–4695

    Article  CAS  PubMed  Google Scholar 

  24. Schultz D, Mikala G, Yatani A, Engle DB, Iles DE, Segers B, Sinke RJ, Weghuis DO, Klöckner U, Wakamori M, Wang J, Melvin D, Varadi G, Schwartz A (1993) Cloning, chromosomal localization, and functional expression of the α1 subunit of the L-type voltage-dependent calcium channel from normal human heart. Proc Natl Acad Sci USA 90:6228–6232

    Article  CAS  PubMed  Google Scholar 

  25. Sigworth FJ, Sine SM (1987) Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys J 52:1047–1054

    Article  CAS  PubMed  Google Scholar 

  26. Spaetgens RL, Zamponi GW (1999) Multiple structural domains contribute to voltage-dependent inactivation of rat brain α1E calcium channels. J Biol Chem 274:22428–22436

    Article  CAS  PubMed  Google Scholar 

  27. Sun L, Fan JS, Clark JW, Palade PT (2000) A model of the L-type Ca2+ channel in rat ventricular myocytes: ion selectivity and inactivation mechanism. J Physiol 529:139–158

    Article  CAS  PubMed  Google Scholar 

  28. Takahashi SX, Mittman S, Colecraft HM (2003) Distinctive modulatory effects of five human auxiliary β2 subunit splice variants on L-type calcium channel gating. Biophys J 84:3007–3021

    Article  CAS  PubMed  Google Scholar 

  29. Takahashi SX, Miriyala J, Hock Tay L, Yue DT, Colecraft HM (2005) CaVβ SH3/guanylate kinase domain interaction regulates multiple properties of voltage-gated Ca2+ channels. J Gen Physiol 126:365–377

    Article  CAS  PubMed  Google Scholar 

  30. Vandenberg CA, Bezanilla F (1991) A sodium channel gating model based on single channel, macroscopic ionic, and gating currents in the squid giant axon. Biophys J 60:1511–1533

    Article  CAS  PubMed  Google Scholar 

  31. Van Petegem F, Clark KA, Chatelain FC, Minor DL Jr (2004) Structure of a complex between a voltage-gated calcium channel beta-subunit and an alpha-subunit domain. Nature 429:671–675

    Article  PubMed  Google Scholar 

  32. Vendel AC, Terry MD, Striegel AR, Iverson NM, Leuranguer V, Rithner CD, Lyons BA, Pickard GE, Tobet SA, Horne WA (2006) Alternative splicing of the voltage-gated Ca2+ channel β4-subunit creates a uniquely folded N-terminal protein binding domain with cell-specific expression in the cerebellar cortex. J Neurosci 26:2635–2644

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. Dirk Gründemann for fruitful discussion to construct β1a-subunit mutants, Dr. Gyula Varadi for generously providing the HEK293α1c cell line, Katja Witschas and Peter Bartels for their excellent support of electrophysiological measurements, Ramin Akhavan-Malyer for a preliminary Markov modeling approach, and Dr. Alexey Kuzmenkin for his large contribution to the IonFit software development. E.K. is indebted to the Christiane Nuesslein-Volhard Foundation for the financial support. This work was supported by the Center of Molecular Medicine Cologne (CMMC A4 to S.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Herzig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jangsangthong, W., Kuzmenkina, E., Khan, I.F.Y. et al. Inactivation of L-type calcium channels is determined by the length of the N terminus of mutant β1 subunits. Pflugers Arch - Eur J Physiol 459, 399–411 (2010). https://doi.org/10.1007/s00424-009-0738-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0738-z

Keywords

Navigation