Skip to main content
Log in

Regulated acid–base transport in the collecting duct

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The renal collecting system serves the fine-tuning of renal acid–base secretion. Acid-secretory type-A intercalated cells secrete protons via a luminally expressed V-type H+-ATPase and generate new bicarbonate released by basolateral chloride/bicarbonate exchangers including the AE1 anion exchanger. Efficient proton secretion depends both on the presence of titratable acids (mainly phosphate) and the concomitant secretion of ammonia being titrated to ammonium. Collecting duct ammonium excretion requires the Rhesus protein RhCG as indicated by recent KO studies. Urinary acid secretion by type-A intercalated cells is strongly regulated by various factors among them acid–base status, angiotensin II and aldosterone, and the Calcium-sensing receptor. Moreover, urinary acidification by H+-ATPases is modulated indirectly by the activity of the epithelial sodium channel ENaC. Bicarbonate secretion is achieved by non-type-A intercalated cells characterized by the luminal expression of the chloride/bicarbonate exchanger pendrin. Pendrin activity is driven by H+-ATPases and may serve both bicarbonate excretion and chloride reabsorption. The activity and expression of pendrin is regulated by different factors including acid–base status, chloride delivery, and angiotensin II and may play a role in NaCl retention and blood pressure regulation. Finally, the relative abundance of type-A and non-type-A intercalated cells may be tightly regulated. Dysregulation of intercalated cell function or abundance causes various syndromes of distal renal tubular acidosis underlining the importance of these processes for acid–base homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adler L, Efrati E, Zelikovic I (2008) Molecular mechanisms of epithelial cell-specific expression and regulation of the human anion exchanger (pendrin) gene. Am J Physiol Cell Physiol 294:C1261–C1276

    PubMed  CAS  Google Scholar 

  2. Al-Awqati Q (1996) Plasticity in epithelial polarity of renal intercalated cells: targeting of the H+-ATPase and band 3. Am J Physiol 270:C1571–C1580

    PubMed  CAS  Google Scholar 

  3. Al-Awqati Q (2003) Terminal differentation of intercalated cells: The role of Hensin. Annu Rev Physiol 65:567–583

    PubMed  CAS  Google Scholar 

  4. Al-Awqati Q, Vijayakumar S, Takito J, Hikita C, Yan L, Wiederholt T (1999) Terminal differentiation in epithelia: the Hensin pathway in intercalated cells. Semin Nephrol 19:415–420

    PubMed  CAS  Google Scholar 

  5. Alexander EA, Shih T, Schwartz JH (1997) H+ secretion is inhibited by clostridial toxins in an inner medullary collecting duct cell line. Am J Physiol 273:F1054–F1057

    PubMed  CAS  Google Scholar 

  6. Alper SL (2002) Genetic diseases of acid–base transporters. Annu Rev Physiol 64:899–923

    PubMed  CAS  Google Scholar 

  7. Alper SL (2003) Diseases of mutations in the SLC4A1/AE1 (band 3) Cl-/HCO -3 exchanger. In: Broer S, Wagner CA (eds) Membrane transporter diseases. Kluwer Academic/ Plenum Publishers, New York, pp 39–63

    Google Scholar 

  8. Alper SL, Kopito RR, Libresco SM, Lodish HF (1988) Cloning and characterization of a murine band 3-related cDNA from kidney and from a lymphoid cell line. J Biol Chem 263:17092–17099

    PubMed  CAS  Google Scholar 

  9. Alper SL, Natale J, Gluck S, Lodish HF, Brown D (1989) Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+-ATPase. Proc Natl Acad Sci U S A 86:5429–5433

    PubMed  CAS  Google Scholar 

  10. Arnett TR (2008) Extracellular pH regulates bone cell function. J Nutr 138:415S–418S

    PubMed  CAS  Google Scholar 

  11. Arruda JA, Dytko G, Mola R, Kurtzman NA (1980) On the mechanism of lithium-induced renal tubular acidosis: studies in the turtle bladder. Kidney Int 17:196–204

    PubMed  CAS  Google Scholar 

  12. Attmane-Elakeb A, Mount DB, Sibella V, Vernimmen C, Hebert SC, Bichara M (1998) Stimulation by in vivo and in vitro metabolic acidosis of expression of rBSC-1, the Na+-K+(NH +4 )-2Cl- cotransporter of the rat medullary thick ascending limb. J Biol Chem 273:33681–33691

    PubMed  CAS  Google Scholar 

  13. Augustinsson O, Johansson K (1986) Ammonium chloride induced acidosis and aldosterone secretion in the goat. Acta Physiol Scand 128:535–540

    PubMed  CAS  Google Scholar 

  14. Bagnis C, Marshansky V, Breton S, Brown D (2001) Remodeling the cellular profile of collecting ducts by chronic carbonic anhydrase inhibition. Am J Physiol Renal Physiol 280:F437–F448

    PubMed  CAS  Google Scholar 

  15. Bailey JL (2005) Metabolic acidosis: an unrecognized cause of morbidity in the patient with chronic kidney disease. Kidney Int Suppl 96:S15–S23

    PubMed  CAS  Google Scholar 

  16. Bakouh N, Benjelloun F, Hulin P, Brouillard F, Edelman A, Cherif-Zahar B, Planelles G (2004) NH3 is involved in the NH4+ transport induced by the functional expression of the human Rh C glycoprotein. J Biol Chem 279:15975–15983

    PubMed  CAS  Google Scholar 

  17. Banerjee A, Li G, Alexander EA, Schwartz JH (2001) Role of SNAP-23 in trafficking of H+-ATPase in cultured inner medullary collecting duct cells. Am J Physiol Cell Physiol 280:775–781

    Google Scholar 

  18. Banerjee A, Shih T, Alexander EA, Schwartz JH (1999) SNARE proteins regulate H+-ATPase redistribution to the apical membrane in rat renal inner medullary collecting duct cells. J Biol Chem 274:26518–26522

    PubMed  CAS  Google Scholar 

  19. Barreto-Chaves ML, Mello-Aires M (1996) Effect of luminal angiotensin II and ANP on early and late cortical distal tubule HCO -3 reabsorption. Am J Physiol 271:F977–F984

    PubMed  CAS  Google Scholar 

  20. Bastani B, Haragsim L, Gluck SL, Siamopoulos KC (1995) Lack of H+-ATPase in distal nephron causing hypokalemia distal RTA in a patient with Sjögren's syndrome. Nephrol Dial Transplant 10:908–913

    PubMed  CAS  Google Scholar 

  21. Bastani B, Purcell H, Hemken P, Trigg D, Gluck S (1991) Expression and distribution of renal vacuolar proton-translocating adenosine triphosphatase in response to chronic acid and alkali loads in the rat. J Clin Invest 88:126–136

    PubMed  CAS  Google Scholar 

  22. Batlle D, Gaviria M, Grupp M, Arruda JA, Wynn J, Kurtzman NA (1982) Distal nephron function in patients receiving chronic lithium therapy. Kidney Int 21:477–485

    PubMed  CAS  Google Scholar 

  23. Batlle DC, Gutterman C, Tarka J, Prasad R (1986) Effect of short-term cyclosporine A administration on urinary acidification. Clinical nephrology 25(Suppl 1):S62–S69

    PubMed  CAS  Google Scholar 

  24. Batlle DC, Sabatini S, Kurtzman NA (1988) On the mechanism of toluene-induced renal tubular acidosis. Nephron 49:210–218

    PubMed  CAS  Google Scholar 

  25. Biner HL, Arpin-Bott MP, Loffing J, Wang X, Knepper M, Hebert SC, Kaissling B (2002) Human cortical distal nephron: distribution of electrolyte and water transport pathways. J Am Soc Nephrol 13:836–847

    PubMed  Google Scholar 

  26. Biver S, Belge H, Bourgeois S, Van Vooren P, Nowik M, Scohy S, Houillier P, Szpirer J, Szpirer C, Wagner CA, Devuyst O, Marini AM (2008) A role for Rhesus factor Rhcg in renal ammonium excretion and male fertility. Nature 456:339–343

    PubMed  CAS  Google Scholar 

  27. Blomqvist SR, Vidarsson H, Fitzgerald S, Johansson BR, Ollerstam A, Brown R, Persson AE, Bergstrom GG, Enerback S (2004) Distal renal tubular acidosis in mice that lack the forkhead transcription factor Foxi1. J Clin Invest 113:1560–1570

    PubMed  CAS  Google Scholar 

  28. Boettger T, Hubner CA, Maier H, Rust MB, Beck FX, Jentsch TJ (2002) Deafness and renal tubular acidosis in mice lacking the K-Cl co-transporter Kcc4. Nature 416:874–878

    PubMed  CAS  Google Scholar 

  29. Bonnici B, Wagner CA (2004) Postnatal expression of transport proteins involved in acid–base transport in mouse kidney. Pflugers Arch 448:16–28

    PubMed  CAS  Google Scholar 

  30. Breton S, Alper SL, Gluck SL, Sly WS, Barker JE, Brown D (1995) Depletion of intercalated cells from collecting ducts of carbonic anhydrase II-deficient (CAR2 null) mice. Am J Physiol 269:F761–F774

    PubMed  CAS  Google Scholar 

  31. Breton S, Nsumu NN, Galli T, Sabolic I, Smith PJ, Brown D (2000) Tetanus toxin-mediated cleavage of cellubrevin inhibits proton secretion in the male reproductive tract. Am J Physiol Renal Physiol 278:F717–F725

    PubMed  CAS  Google Scholar 

  32. Breton S, Wiederhold T, Marshansky V, Nsumu NN, Ramesh V, Brown D (2000) The B1 subunit of the H+ATPase is a PDZ domain-binding protein. Colocalization with NHE-RF in renal B-intercalated cells. J Biol Chem 275:18219–18224

    PubMed  CAS  Google Scholar 

  33. Bruce LJ, Cope DL, Jones GK, Schofield AE, Burley M, Povey S, Unwin RJ, Wrong O, Tanner MJ (1997) Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene. J Clin Invest 100:1693–1707

    PubMed  CAS  Google Scholar 

  34. Chambrey R, Goossens D, Bourgeois S, Picard N, Bloch-Faure M, Leviel F, Geoffroy V, Cambillau M, Colin Y, Paillard M, Houillier P, Cartron JP, Eladari D (2005) Genetic ablation of Rhbg in the mouse does not impair renal ammonium excretion. Am J Physiol Renal Physiol 289:F1281–F1290

    PubMed  CAS  Google Scholar 

  35. Cheval L, Morla L, Elalouf JM, Doucet A (2006) Kidney collecting duct acid–base "regulon". Physiol Genomics 27:271–281

    PubMed  CAS  Google Scholar 

  36. Codina J, Pressley TA, DuBose TD Jr (1999) The colonic H+, K+-ATPase functions as a Na+-dependent K+(NH4+)-ATPase in apical membranes from rat distal colon. J Biol Chem 274:19693–19698

    PubMed  CAS  Google Scholar 

  37. Cohen EP, Bastani B, Cohen MR, Kolner S, Hemken P, Gluck SL (1992) Absence of H+-ATPase in cortical collecting tubules of a patient with Sjogren's syndrome and distal renal tubular acidosis. J Am Soc Nephrol 3:264–271

    PubMed  CAS  Google Scholar 

  38. Cordat E, Casey JR (2009) Bicarbonate transport in cell physiology and disease. Biochem J 417:423–439

    PubMed  CAS  Google Scholar 

  39. Cordat E, Kittanakom S, Yenchitsomanus PT, Li J, Du K, Lukacs GL, Reithmeier RA (2006) Dominant and recessive distal renal tubular acidosis mutations of kidney anion exchanger 1 induce distinct trafficking defects in MDCK cells. Traffic 7:117–128

    PubMed  CAS  Google Scholar 

  40. Cougnon M, Bouyer P, Jaisser F, Edelman A, Planelles G (1999) Ammonium transport by the colonic H+-K+-ATPase expressed in Xenopus oocytes. Am J Physiol 277:C280–C287

    PubMed  CAS  Google Scholar 

  41. Curthoys NP, Gstraunthaler G (2001) Mechanism of increased renal gene expression during metabolic acidosis. Am J Physiol Renal Physiol 281:F381–F390

    PubMed  CAS  Google Scholar 

  42. Curthoys NP, Taylor L, Hoffert JD, Knepper MA (2007) Proteomic analysis of the adaptive response of rat renal proximal tubules to metabolic acidosis. Am J Physiol Renal Physiol 292:F140–F147

    PubMed  CAS  Google Scholar 

  43. Da Silva JC Jr, Perrone RD, Johns CA, Madias NE (1991) Rat kidney band 3 mRNA modulation in chronic respiratory acidosis. Am J Physiol 260:F204–F209

    Google Scholar 

  44. De Lisle RC, Xu W, Roe BA, Ziemer D (2008) Effects of Muclin (Dmbt1) deficiency on the gastrointestinal system. Am J Physiol Gastrointest Liver Physiol 294:G717–G727

    PubMed  Google Scholar 

  45. DeFranco PE, Haragsim L, Schmitz PG, Bastani B (1995) Absence of vacuolar H+-ATPase pump in the collecting duct of a patient with hypokalemic distal renal tubular acidosis and Sjogren's syndrome. J Am Soc Nephrol 6:295–301

    PubMed  CAS  Google Scholar 

  46. DeFronzo RA, Beckles AD (1979) Glucose intolerance following chronic metabolic acidosis in man. Am J Physiol 236:E328–E334

    PubMed  CAS  Google Scholar 

  47. Devonald MA, Smith AN, Poon JP, Ihrke G, Karet FE (2003) Non-polarized targeting of AE1 causes autosomal dominant distal renal tubular acidosis. Nat Genet 33:125–127

    PubMed  CAS  Google Scholar 

  48. Devuyst O, Christie PT, Courtoy PJ, Beauwens R, Thakker RV (1999) Intra-renal and subcellular distribution of the human chloride channel, CLC-5, reveals a pathophysiological basis for Dent's disease. Hum Mol Genet 8:247–257

    PubMed  CAS  Google Scholar 

  49. Eladari D, Cheval L, Quentin F, Bertrand O, Mouro I, Cherif-Zahar B, Cartron JP, Paillard M, Doucet A, Chambrey R (2002) Expression of RhCG, a New Putative NH3/NH +4 Transporter, along the Rat Nephron. J Am Soc Nephrol 13:1999–2008

    PubMed  CAS  Google Scholar 

  50. Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis AD, Sheffield VC, Green ED (1997) Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat Genet 17:411–422

    PubMed  CAS  Google Scholar 

  51. Fejes-Toth G, Naray-Fejes-Toth A (1992) Differentiation of renal beta-intercalated cells to alpha-intercalated and principal cells in culture. Proc Natl Acad Sci U S A 89:5487–5491

    PubMed  CAS  Google Scholar 

  52. Finberg KE, Wagner CA, Bailey MA, Paunescu TG, Breton S, Brown D, Giebisch G, Geibel JP, Lifton RP (2005) The B1 subunit of the H+ATPase is required for maximal urinary acidification. Proc Nat Acad Sci USA 102:13616–13621

    PubMed  CAS  Google Scholar 

  53. Finberg KE, Wagner CA, Stehberger PA, Geibel JP, Lifton RP (2003) Molecular Cloning and Characterization of Atp6v1b1, the Murine Vacuolar H+-ATPase B1-Subunit. Gene 318:25–34

    PubMed  CAS  Google Scholar 

  54. Forgac M (1999) Structure and properties of the vacuolar (H+)-ATPases. J Biol Chem 274:12951–12954

    PubMed  CAS  Google Scholar 

  55. Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8:917–929

    PubMed  CAS  Google Scholar 

  56. Frank AE, Wingo CS, Andrews PM, Ageloff S, Knepper MA, Weiner ID (2002) Mechanisms through which ammonia regulates cortical collecting duct net proton secretion. Am J Physiol Renal Physiol 282:F1120–F1128

    PubMed  CAS  Google Scholar 

  57. Frische S, Kwon TH, Frokiaer J, Madsen KM, Nielsen S (2003) Regulated expression of pendrin in rat kidney in response to chronic NH4Cl or NaHCO3 loading. Am J Physiol Renal Physiol 284:F584–F593

    PubMed  CAS  Google Scholar 

  58. Fry AC, Karet FE (2007) Inherited renal acidoses. Physiology (Bethesda) 22:202–211

    CAS  Google Scholar 

  59. Fuster DG, Zhang J, Xie XS, Moe OW (2008) The vacuolar-ATPase B1 subunit in distal tubular acidosis: novel mutations and mechanisms for dysfunction. Kidney Int 73:1151–1158

    PubMed  CAS  Google Scholar 

  60. Geller DS, Rodriguez-Soriano J, Vallo Boado A, Schifter S, Bayer M, Chang SS, Lifton RP (1998) Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I. Nat Genet 19:279–281

    PubMed  CAS  Google Scholar 

  61. Giebisch G, Malnic G, De Mello GB, De Mello Aires M (1977) Kinetics of luminal acidification in cortical tubules of the rat kidney. J Physiol 267:571–599

    PubMed  CAS  Google Scholar 

  62. Good DW (1994) Ammonium transport by the thick ascending limb of Henle's loop. Annu Rev Physiol 56:623–647

    PubMed  CAS  Google Scholar 

  63. Gottschalk CW, Lassiter WE, Mylle M (1960) Localization of urine acidification in the mammalian kidney. Am J Physiol 198:581–585

    PubMed  CAS  Google Scholar 

  64. Goyal S, Mentone S, Aronson PS (2005) Immunolocalization of NHE8 in rat kidney. Am J Physiol Renal Physiol 288:F530–F538

    PubMed  CAS  Google Scholar 

  65. Gu S, Villegas CJ, Jiang JX (2005) Differential regulation of amino acid transporter SNAT3 by insulin in hepatocytes. J Biol Chem 280:26055–26062

    PubMed  CAS  Google Scholar 

  66. Gyorke ZS, Sulyok E, Guignard JP (1991) Ammonium chloride metabolic acidosis and the activity of renin-angiotensin-aldosterone system in children. Eur J Pediatr 150:547–549

    PubMed  CAS  Google Scholar 

  67. Hafner P, Grimaldi R, Capuano P, Capasso G, Wagner CA (2008) Pendrin in the mouse kidney is primarily regulated by Cl- excretion but also by systemic metabolic acidosis. Am J Physiol Cell Physiol 295:C1658–C1667

    PubMed  CAS  Google Scholar 

  68. Hamm LL, Alpern RJ, Preisig PA (2008) Cellular mechanisms of renal tubular acidification. In: Alpern RJ, Hebert SC (eds) Seldin and Giebisch's The Kidney Physiology and Pathophysiology. Elsevier, Amsterdam, pp 1539–1585

    Google Scholar 

  69. Han KH, Croker BP, Clapp WL, Werner D, Sahni M, Kim J, Kim HY, Handlogten ME, Weiner ID (2006) Expression of the ammonia transporter, rh C glycoprotein, in normal and neoplastic human kidney. J Am Soc Nephrol 17:2670–2679

    PubMed  CAS  Google Scholar 

  70. Hays SR (1992) Mineralocorticoid modulation of apical and basolateral membrane H+/OH-/HCO -3 transport processes in the rabbit inner stripe of outer medullary collecting duct. J Clin Invest 90:180–187

    PubMed  CAS  Google Scholar 

  71. Heering P, Ivens K, Aker S, Grabensee B (1998) Distal tubular acidosis induced by FK506. Clin Transplant 12:465–471

    PubMed  CAS  Google Scholar 

  72. Henger A, Tutt P, Riesen WF, Hulter HN, Krapf R (2000) Acid–base and endocrine effects of aldosterone and angiotensin II inhibition in metabolic acidosis in human patients. J Lab Clin Med 136:379–389

    PubMed  CAS  Google Scholar 

  73. Hropot M, Fowler N, Karlmark B, Giebisch G (1985) Tubular action of diuretics: distal effects on electrolyte transport and acidification. Kidney Int 28:477–489

    PubMed  CAS  Google Scholar 

  74. Huber S, Asan E, Jons T, Kerscher C, Puschel B, Drenckhahn D (1999) Expression of rat kidney anion exchanger 1 in type-A intercalated cells in metabolic acidosis and alkalosis. Am J Physiol 277:F841–F849

    PubMed  CAS  Google Scholar 

  75. Ibrahim H, Lee YJ, Curthoys NP (2008) Renal response to metabolic acidosis: role of mRNA stabilization. Kidney Int 73:11–18

    PubMed  CAS  Google Scholar 

  76. Jakobsen JK, Odgaard E, Wang W, Elkjaer ML, Nielsen S, Aalkjaer C, Leipziger J (2004) Functional up-regulation of basolateral Na+-dependent HCO3- transporter NBCn1 in medullary thick ascending limb of K+-depleted rats. Pflugers Arch 448:571–578

    PubMed  CAS  Google Scholar 

  77. Jehle S, Zanetti A, Muser J, Hulter HN, Krapf R (2006) Partial neutralization of the acidogenic Western diet with potassium citrate increases bone mass in postmenopausal women with osteopenia. J Am Soc Nephrol 17:3213–3222

    PubMed  CAS  Google Scholar 

  78. Joo KW, Jeon US, Han JS, Ahn C, Kim S, Lee JS, Kim GH, Cho YS, Kim YH, Kim J (1998) Absence of H+-ATPase in the intercalated cells of renal tissues in classic distal renal tubular acidosis. Clinical nephrology 49:226–231

    PubMed  CAS  Google Scholar 

  79. Jouret F, Auzanneau C, Debaix H, Wada GH, Pretto C, Marbaix E, Karet FE, Courtoy PJ, Devuyst O (2005) Ubiquitous and kidney-specific subunits of vacuolar H+-ATPase are differentially expressed during nephrogenesis. J Am Soc Nephrol 16:3235–3246

    PubMed  CAS  Google Scholar 

  80. Kalhoff H, Manz F (2001) Nutrition, acid–base status and growth in early childhood. Eur J Nutr 40:221–230

    PubMed  CAS  Google Scholar 

  81. Karet FE, Finberg KE, Nelson RD, Nayir A, Mocan H, Sanjad SA, Rodriguez SJ, Santos F, Cremers CW, Di Pietro A, Hoffbrand BI, Winiarski J, Bakkaloglu A, Ozen S, Dusunsel R, Goodyer P, Hulton SA, Wu DK, Skvorak AB, Morton CC, Cunningham MJ, Jha V, Lifton RP (1999) Mutations in the gene encoding B1 subunit of H+-ATPase cause renal tubular acidosis with sensorineural deafness. Nat Genet 21:84–90

    PubMed  CAS  Google Scholar 

  82. Karet FE, Gainza FJ, Gyory AZ, Unwin RJ, Wrong O, Tanner MJ, Nayir A, Alpay H, Santos F, Hulton SA, Bakkaloglu A, Ozen S, Cunningham MJ, di Pietro A, Walker WG, Lifton RP (1998) Mutations in the chloride-bicarbonate exchanger gene AE1 cause autosomal dominant but not autosomal recessive distal renal tubular acidosis. Proc Natl Acad Sci U S A 95:6337–6342

    PubMed  CAS  Google Scholar 

  83. Karinch AM, Lin CM, Meng Q, Pan M, Souba WW (2007) Glucocorticoids have a role in renal cortical expression of the SNAT3 glutamine transporter during chronic metabolic acidosis. Am J Physiol Renal Physiol 292:F448–F455

    PubMed  CAS  Google Scholar 

  84. Keskanokwong T, Shandro HJ, Johnson DE, Kittanakom S, Vilas GL, Thorner P, Reithmeier RA, Akkarapatumwong V, Yenchitsomanus PT, Casey JR (2007) Interaction of integrin-linked kinase with the kidney chloride/bicarbonate exchanger, kAE1. J Biol Chem 282:23205–23218

    PubMed  CAS  Google Scholar 

  85. Khademi S, O'Connell J 3rd, Remis J, Robles-Colmenares Y, Miercke LJ, Stroud RM (2004) Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A. Science 305:1587–1594

    PubMed  CAS  Google Scholar 

  86. Khositseth S, Sirikanaerat A, Khoprasert S, Opastirakul S, Kingwatanakul P, Thongnoppakhun W, Yenchitsomanus PT (2008) Hematological abnormalities in patients with distal renal tubular acidosis and hemoglobinopathies. Am J Hematol 83:465–471

    PubMed  CAS  Google Scholar 

  87. Khositseth S, Sirikanerat A, Wongbenjarat K, Opastirakul S, Khoprasert S, Peuksungnern R, Wattanasirichaigoon D, Thongnoppakhun W, Viprakasit V, Yenchitsomanus PT (2007) Distal renal tubular acidosis associated with anion exchanger 1 mutations in children in Thailand. Am J Kidney Dis 49(841):850

    Google Scholar 

  88. Kim HY, Baylis C, Verlander JW, Han KH, Reungjui S, Handlogten ME, Weiner ID (2007) Effect of reduced renal mass on renal ammonia transporter family, Rh C glycoprotein and Rh B glycoprotein, expression. Am J Physiol Renal Physiol 293:F1238–F1247

    PubMed  CAS  Google Scholar 

  89. Kim HY, Verlander JW, Bishop JM, Cain BD, Han KH, Igarashi P, Lee HW, Handlogten ME, Weiner ID (2009) Basolateral Expression of the ammonia transporter family member, Rh C Glycoprotein, in the Mouse Kidney. Am J Physiol Renal Physiol 296(3):F543–F555

    PubMed  CAS  Google Scholar 

  90. Kim J, Cha JH, Tisher CC, Madsen KM (1996) Role of apoptotic and nonapoptotic cell death in removal of intercalated cells from developing rat kidney. Am J Physiol 270:F575–F592

    PubMed  CAS  Google Scholar 

  91. Kim J, Kim YH, Cha JH, Tisher CC, Madsen KM (1999) Intercalated cell subtypes in connecting tubule and cortical collecting duct of rat and mouse. J Am Soc Nephrol 10:1–12

    PubMed  CAS  Google Scholar 

  92. Kim YH, Kwon TH, Frische S, Kim J, Tisher CC, Madsen KM, Nielsen S (2002) Immunocytochemical localization of pendrin in intercalated cell subtypes in rat and mouse kidney. Am J Physiol Renal Physiol 283:F744–F754

    PubMed  Google Scholar 

  93. Kittanakom S, Cordat E, Akkarapatumwong V, Yenchitsomanus PT, Reithmeier RA (2004) Trafficking defects of a novel autosomal recessive distal renal tubular acidosis mutant (S773P) of the human kidney anion exchanger (kAE1). J Biol Chem 279:40960–40971

    PubMed  CAS  Google Scholar 

  94. Knepper MA, Agre P (2004) Structural biology. The atomic architecture of a gas channel. Science 305:1573–1574

    PubMed  CAS  Google Scholar 

  95. Knepper MA, Packer R, Good DW (1989) Ammonium transport in the kidney. Physiol Rev 69:179–249

    PubMed  CAS  Google Scholar 

  96. Kollert-Jons A, Wagner S, Hubner S, Appelhans H, Drenckhahn D (1993) Anion exchanger 1 in human kidney and oncocytoma differs from erythroid AE1 in its NH2 terminus. Am J Physiol 265:F813–F821

    PubMed  CAS  Google Scholar 

  97. Kovacikova J, Winter C, Loffing-Cueni D, Loffing J, Finberg KE, Lifton RP, Hummler E, Rossier B, Wagner CA (2006) The connecting tubule is the main site of the furosemide-induced urinary acidification by the vacuolar H+-ATPase. Kidney Int 70:1706–1716

    PubMed  CAS  Google Scholar 

  98. Kurth I, Hentschke M, Hentschke S, Borgmeyer U, Gal A, Hubner CA (2006) The forkhead transcription factor Foxi1 directly activates the AE4 promoter. Biochem J 393:277–283

    PubMed  CAS  Google Scholar 

  99. Laing CM, Toye AM, Capasso G, Unwin RJ (2005) Renal tubular acidosis: developments in our understanding of the molecular basis. Int J Biochem Cell Biol 37:1151–1161

    PubMed  CAS  Google Scholar 

  100. Levine DZ, Iacovitti M, Buckman S, Burns KD (1996) Role of angiotensin II in dietary modulation of rat late distal tubule bicarbonate flux in vivo. J Clin Invest 97:120–125

    PubMed  CAS  Google Scholar 

  101. Levine DZ, Iacovitti M, Buckman S, Hincke MT, Luck B, Fryer JN (1997) ANG II-dependent HCO -3 reabsorption in surviving rat distal tubules: expression/activation of H+-ATPase. Am J Physiol 272:F799–F808

    PubMed  CAS  Google Scholar 

  102. Li G, Alexander EA, Schwartz JH (2003) Syntaxin isoform specificity in the regulation of renal H+-ATPase exocytosis. J Biol Chem 278:19791–19797

    PubMed  CAS  Google Scholar 

  103. Li SZ, McDill BW, Kovach PA, Ding L, Go WY, Ho SN, Chen F (2007) Calcineurin-NFATc signaling pathway regulates AQP2 expression in response to calcium signals and osmotic stress. Am J Physiol Cell Physiol 292:C1606–C1616

    PubMed  CAS  Google Scholar 

  104. Lifton RP, Gharavi AG, Geller DS (2001) Molecular mechanisms of human hypertension. Cell 104:545–556

    PubMed  CAS  Google Scholar 

  105. Loffing J, Loffing-Cueni D, Valderrabano V, Klausli L, Hebert SC, Rossier BC, Hoenderop JG, Bindels RJ, Kaissling B (2001) Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am J Physiol Renal Physiol 281:F1021–F1027

    PubMed  CAS  Google Scholar 

  106. Ludwig MG, Vanek M, Guerini D, Gasser JA, Jones CE, Junker U, Hofstetter H, Wolf RM, Seuwen K (2003) Proton-sensing G-protein-coupled receptors. Nature 425:93–98

    PubMed  CAS  Google Scholar 

  107. Luyckx VA, Goda FO, Mount DB, Nishio T, Hall A, Hebert SC, Hammond TG, Yu AS (1998) Intrarenal and subcellular localization of rat CLC5. Am J Physiol 275:F761–F769

    PubMed  CAS  Google Scholar 

  108. Madsen KM, Verlander JW, Kim J, Tisher CC (1991) Morphological adaption of the collecting duct to acid–base disturbances. Kidney Int Suppl 33:S57–S63

    PubMed  CAS  Google Scholar 

  109. Mak RH (1998) Effect of metabolic acidosis on insulin action and secretion in uremia. Kidney Int 54:603–607

    PubMed  CAS  Google Scholar 

  110. Makhanova N, Lee G, Takahashi N, Sequeira Lopez ML, Gomez RA, Kim HS, Smithies O (2006) Kidney function in mice lacking aldosterone. Am J Physiol Renal Physiol 290:F61–F69

    PubMed  CAS  Google Scholar 

  111. Marini AM, Matassi G, Raynal V, Andre B, Cartron JP, Cherif-Zahar B (2000) The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nat Genet 26:341–344

    PubMed  CAS  Google Scholar 

  112. McCurdy DK, Frederic M, Elkinton JR (1968) Renal tubular acidosis due to amphotericin B. New Eng J Med 278:124–131

    PubMed  CAS  Google Scholar 

  113. Mehta PK, Sodhi B, Arruda JA, Kurtzman NA (1979) Interaction of amiloride and lithium on distal urinary acidification. J Lab Clin Med 93:983–994

    PubMed  CAS  Google Scholar 

  114. Michael UF, Chavez R, Cookson SL, Vaamonde CA (1976) Impaired urinary acidification in the hypothyroid rat. Pflugers Arch 361:215–220

    PubMed  CAS  Google Scholar 

  115. Moret C, Dave MH, Schulz N, Jiang JX, Verrey F, Wagner CA (2007) Regulation of renal amino acid transporters during metabolic acidosis. Am J Physiol Renal Physiol 292:F555–F566

    PubMed  CAS  Google Scholar 

  116. Moulin P, Igarashi T, Van Der Smissen P, Cosyns JP, Verroust P, Thakker RV, Scheinman SJ, Courtoy PJ, Devuyst O (2003) Altered polarity and expression of H+-ATPase without ultrastructural changes in kidneys of Dent's disease patients. Kidney Int 63:1285–1295

    PubMed  CAS  Google Scholar 

  117. Nakhoul NL, Hamm LL (2004) Non-erythroid Rh glycoproteins: a putative new family of mammalian ammonium transporters. Pflugers Arch 447:807–812

    PubMed  CAS  Google Scholar 

  118. Nascimento L, Rademacher DR, Hamburger R, Arruda JA, Kurtzman A (1977) On the mechanism of lithium-induced renal tubular acidosis. J Lab Clin Med 89:455–462

    PubMed  CAS  Google Scholar 

  119. Nelson N, Harvey WR (1999) Vacuolar and plasma membrane proton-adenosinetriphosphatases. Physiol Rev 79:361–385

    PubMed  CAS  Google Scholar 

  120. Nelson RD, Guo XL, Masood K, Brown D, Kalkbrenner M, Gluck S (1992) Selectively amplified expression of an isoform of the vacuolar H+-ATPase 56-kilodalton subunit in renal intercalated cells. Proc Natl Acad Sci U S A 89:3541–3545

    PubMed  CAS  Google Scholar 

  121. Nicoletta JA, Ross JJ, Li G, Cheng Q, Schwartz J, Alexander EA, Schwartz JH (2004) Munc-18–2 regulates exocytosis of H+-ATPase in rat inner medullary collecting duct cells. Am J Physiol Cell Physiol 287:C1366–C1374

    PubMed  CAS  Google Scholar 

  122. Nishi T, Forgac M (2002) The vacuolar (H+)-ATPases–nature's most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103

    PubMed  CAS  Google Scholar 

  123. Nowik M, Lecca MR, Velic A, Rehrauer H, Brandli AW, Wagner CA (2008) Genome-wide gene expression profiling reveals renal genes regulated during metabolic acidosis. Physiol Genomics 32:322–334

    PubMed  CAS  Google Scholar 

  124. Obermuller N, Gretz N, Kriz W, Reilly RF, Witzgall R (1998) The swelling-activated chloride channel ClC-2, the chloride channel ClC-3, and ClC-5, a chloride channel mutated in kidney stone disease, are expressed in distinct subpopulations of renal epithelial cells. J Clin Invest 101:635–642

    PubMed  CAS  Google Scholar 

  125. Ochotny N, Van Vliet A, Chan N, Yao Y, Morel M, Kartner N, von Schroeder HP, Heersche JN, Manolson MF (2006) Effects of human a3 and a4 mutations that result in osteopetrosis and distal renal tubular acidosis on yeast V-ATPase expression and activity. J Biol Chem 281:26102–26111

    PubMed  CAS  Google Scholar 

  126. Odgaard E, Jakobsen JK, Frische S, Praetorius J, Nielsen S, Aalkjaer C, Leipziger J (2004) Basolateral Na+-dependent HCO3- transporter NBCn1-mediated HCO3- influx in rat medullary thick ascending limb. J Physiol 555:205–218

    PubMed  CAS  Google Scholar 

  127. Oster JR, Michael UF, Perez GO, Sonneborn RE, Vaamonde CA (1976) Renal acidification in hypothyroid man. Clinical nephrology 6:398–403

    PubMed  CAS  Google Scholar 

  128. Pacha J, Frindt G, Sackin H, Palmer LG (1991) Apical maxi K channels in intercalated cells of CCT. Am J Physiol 261:F696–F705

    PubMed  CAS  Google Scholar 

  129. Palmer LG, Frindt G (2007) High-conductance K channels in intercalated cells of the rat distal nephron. Am J Physiol Renal Physiol 292:F966–F973

    PubMed  CAS  Google Scholar 

  130. Paunescu TG, Da Silva N, Marshansky V, McKee M, Breton S, Brown D (2004) Expression of the 56 kDa B2 subunit isoform of the vacuolar H+ATPase in proton secreting cells of the kidney and epididymis. Am J Physiol Cell Physiol 287:C149–C162

    PubMed  CAS  Google Scholar 

  131. Paunescu TG, Russo LM, Da Silva N, Kovacikova J, Mohebbi N, Van Hoek AN, McKee M, Wagner CA, Breton S, Brown D (2007) Compensatory membrane expression of the V-ATPase B2 subunit isoform in renal medullary intercalated cells of B1-deficient mice. Am J Physiol Renal Physiol 293:F1915–F1926

    PubMed  CAS  Google Scholar 

  132. Pech V, Kim YH, Weinstein AM, Everett LA, Pham TD, Wall SM (2006) Angiotensin II increases chloride absorption in the cortical collecting duct in mice through a pendrin-dependent mechanism. Am J Physiol Renal Physiol 292(3):F914–F920

    PubMed  Google Scholar 

  133. Pech V, Zheng W, Pham TD, Verlander JW, Wall SM (2008) Angiotensin II activates H+-ATPase in type-A intercalated cells. J Am Soc Nephrol 19:84–91

    PubMed  CAS  Google Scholar 

  134. Pela I, Bigozzi M, Bianchi B (2008) Profound hypokalemia and hypochloremic metabolic alkalosis during thiazide therapy in a child with Pendred syndrome. Clin Nephrol 69:450–453

    PubMed  CAS  Google Scholar 

  135. Peng H, Vijayakumar S, Schiene-Fischer C, Li H, Purkerson JM, Malesevic M, Liebscher J, Al-Awqati Q, Schwartz GJ (2009) Secreted cyclophilin A, a peptidylprolyl cis-trans isomerase, mediates matrix assembly of hensin, a protein implicated in epithelial differentiation. J Biol Chem 284(10):6465–6475

    PubMed  CAS  Google Scholar 

  136. Pertovaara M, Korpela M, Kouri T, Pasternack A (1999) The occurrence of renal involvement in primary Sjogren's syndrome: a study of 78 patients. Rheumatology (Oxford) 38:1113–1120

    CAS  Google Scholar 

  137. Purkerson JM, Schwartz GJ (2007) The role of carbonic anhydrases in renal physiology. Kidney Int 71:103–115

    PubMed  CAS  Google Scholar 

  138. Pushkin A, Kurtz I (2006) SLC4 base (HCO3 -, CO3 2-) transporters: classification, function, structure, genetic diseases, and knockout models. Am J Physiol Renal Physiol 290:F580–F599

    PubMed  CAS  Google Scholar 

  139. Quentin F, Chambrey R, Trinh-Trang-Tan MM, Fysekidis M, Cambillau M, Paillard M, Aronson PS, Eladari D (2004) The Cl-/HCO -3 exchanger pendrin in the rat kidney is regulated in response to chronic alterations in chloride balance. Am J Physiol Renal Physiol 287:F1179–F1188

    PubMed  CAS  Google Scholar 

  140. Quentin F, Eladari D, Cheval L, Lopez C, Goossens D, Colin Y, Cartron JP, Paillard M, Chambrey R (2003) RhBG and RhCG, the Putative Ammonia Transporters, Are Expressed in the Same Cells in the Distal Nephron. J Am Soc Nephrol 14:545–554

    PubMed  CAS  Google Scholar 

  141. Quilty JA, Li J, Reithmeier RA (2002) Impaired trafficking of distal renal tubular acidosis mutants of the human kidney anion exchanger kAE1. Am J Physiol Renal Physiol 282:F810–F820

    PubMed  CAS  Google Scholar 

  142. Renkema KY, Velic A, Dijkman HB, Verkaart S, van der Kemp AW, Nowik M, Timemrmans K, Doucet A, Wagner CA, Bindels RJ, Hoenderop JG (2009) Calcium-sensing receptor-mediated urinary acidification prevents renal stone formation. J Amer Soc Nephrol in press

  143. Renner M, Bergmann G, Krebs I, End C, Lyer S, Hilberg F, Helmke B, Gassler N, Autschbach F, Bikker F, Strobel-Freidekind O, Gronert-Sum S, Benner A, Blaich S, Wittig R, Hudler M, Ligtenberg AJ, Madsen J, Holmskov U, Annese V, Latiano A, Schirmacher P, Amerongen AV, D'Amato M, Kioschis P, Hafner M, Poustka A, Mollenhauer J (2007) DMBT1 confers mucosal protection in vivo and a deletion variant is associated with Crohn's disease. Gastroenterology 133:1499–1509

    PubMed  CAS  Google Scholar 

  144. Romero MF, Fulton CM, Boron WF (2004) The SLC4 family of HCO 3 - transporters. Pflugers Arch 447:495–509

    PubMed  CAS  Google Scholar 

  145. Roscoe JM, Goldstein MB, Halperin ML, Schloeder FX, Stinebaugh BJ (1977) Effect of amphotercin B on urine acidification in rats: implications for the pathogenesis of distal renal tubular acidosis. J Lab Clin Med 89:463–470

    PubMed  CAS  Google Scholar 

  146. Roscoe JM, Goldstein MB, Halperin ML, Wilson DR, Stinebaugh BJ (1976) Lithium-induced impairment of urine acidification. Kidney Int 9:344–350

    PubMed  CAS  Google Scholar 

  147. Roth DE, Venta PJ, Tashian RE, Sly WS (1992) Molecular basis of human carbonic anhydrase II deficiency. Proc Natl Acad Sci U S A 89:1804–1808

    PubMed  CAS  Google Scholar 

  148. Rothenberger F, Velic A, Stehberger PA, Kovacikova J, Wagner CA (2007) Angiotensin II stimulates vacuolar H+-ATPase activity in renal acid-secretory intercalated cells from the outer medullary collecting duct. J Am Soc Nephrol 18:2085–2093

    PubMed  CAS  Google Scholar 

  149. Royaux IE, Wall SM, Karniski LP, Everett LA, Suzuki K, Knepper MA, Green ED (2001) Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc Natl Acad Sci U S A 98:4221–4226

    PubMed  CAS  Google Scholar 

  150. Rungroj N, Devonald MA, Cuthbert AW, Reimann F, Akkarapatumwong V, Yenchitsomanus PT, Bennett WM, Karet FE (2004) A novel missense mutation in AE1 causing autosomal dominant distal renal tubular acidosis retains normal transport function but is mistargeted in polarized epithelial cells. J Biol Chem 279:13833–13838

    PubMed  CAS  Google Scholar 

  151. Sabolic I, Brown D, Gluck SL, Alper SL (1997) Regulation of AE1 anion exchanger and H+-ATPase in rat cortex by acute metabolic acidosis and alkalosis. Kidney Int 51:125–137

    PubMed  CAS  Google Scholar 

  152. Sands JM, Naruse M, Baum M, Jo I, Hebert SC, Brown EM, Harris HW (1997) Apical extracellular calcium/polyvalent cation-sensing receptor regulates vasopressin-elicited water permeability in rat kidney inner medullary collecting duct. J Clin Invest 99:1399–1405

    PubMed  CAS  Google Scholar 

  153. Schambelan M, Sebastian A, Katuna BA, Arteaga E (1987) Adrenocortical hormone secretory response to chronic NH4Cl-induced metabolic acidosis. Am J Physiol 252:E454–460

    PubMed  CAS  Google Scholar 

  154. Scheinman SJ (1998) X-linked hypercalciuric nephrolithiasis: clinical syndromes and chloride channel mutations. Kidney Int 53:3–17

    PubMed  CAS  Google Scholar 

  155. Schulz N, Dave MH, Stehberger PA, Chau T, Wagner CA (2007) Differential localization of vacuolar H+-ATPases containing a1, a2, a3, or a4 (ATP6V0A1–4) subunit isoforms along the nephron. Cell Physiol Biochem 20:109–120

    PubMed  CAS  Google Scholar 

  156. Schwartz GJ, Al-Awqati Q (1985) Carbon dioxide causes exocytosis of vesicles containing H+ pumps in isolated perfused proximal and collecting tubules. J Clin Invest 75:1638–1644

    PubMed  CAS  Google Scholar 

  157. Schwartz GJ, Barasch J, Al-Awqati Q (1985) Plasticity of functional epithelial polarity. Nature 318:368–371

    PubMed  CAS  Google Scholar 

  158. Schwartz GJ, Tsuruoka S, Vijayakumar S, Petrovic S, Mian A, Al-Awqati Q (2002) Acid incubation reverses the polarity of intercalated cell transporters, an effect mediated by hensin. J Clin Invest 109:89–99

    PubMed  CAS  Google Scholar 

  159. Scott DA, Wang R, Kreman TM, Sheffield VC, Karniski LP (1999) The Pendred syndrome gene encodes a chloride-iodide transport protein. Nat Genet 21:440–443

    PubMed  CAS  Google Scholar 

  160. Sebastian A, McSherry E, Morris RC Jr (1976) Impaired renal conservation of sodium and chloride during sustained correction of systemic acidosis in patients with type 1, classic renal tubular acidosis. J Clin Invest 58:454–469

    PubMed  CAS  Google Scholar 

  161. Sebastian A, Sutton JM, Hulter HN, Schambelan M, Poler SM (1980) Effect of mineralocorticoid replacement therapy on renal acid–base homeostasis in adrenalectomized patients. Kidney Int 18:762–773

    PubMed  CAS  Google Scholar 

  162. Seshadri RM, Klein JD, Kozlowski S, Sands JM, Kim YH, Han KH, Handlogten ME, Verlander JW, Weiner ID (2006) Renal expression of the ammonia transporters, Rhbg and Rhcg, in response to chronic metabolic acidosis. Am J Physiol Renal Physiol 290:F397–F408

    PubMed  CAS  Google Scholar 

  163. Seshadri RM, Klein JD, Smith T, Sands JM, Handlogten ME, Verlander JW, Weiner ID (2006) Changes in subcellular distribution of the ammonia transporter, Rhcg, in response to chronic metabolic acidosis. Am J Physiol Renal Physiol 290:F1443–F1452

    PubMed  CAS  Google Scholar 

  164. Shayakul C, Jarolim P, Zachlederova M, Prabakaran D, Cortez-Campeao D, Kalabova D, Stuart-Tilley AK, Ideguchi H, Haller C, Alper SL (2004) Characterization of a highly polymorphic marker adjacent to the SLC4A1 gene and of kidney immunostaining in a family with distal renal tubular acidosis. Nephrol Dial Transplant 19:371–379

    PubMed  CAS  Google Scholar 

  165. Sly WS, Shah GN (2001) The carbonic anhydrase II deficiency syndrome: osteopetrosis with renal tubular acidosis and cerebral calcification. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 5331–5343

    Google Scholar 

  166. Smith AN, Borthwick KJ, Karet FE (2002) Molecular cloning and characterization of novel tissue-specific isoforms of the human vacuolar H+-ATPase C, G and d subunits, and their evaluation in autosomal recessive distal renal tubular acidosis. Gene 297:169–177

    PubMed  CAS  Google Scholar 

  167. Smith AN, Finberg KE, Wagner CA, Lifton RP, Devonald MA, Su Y, Karet FE (2001) Molecular cloning and characterization of Atp6n1b: a novel fourth murine vacuolar H+-ATPase a-subunit gene. J Biol Chem 276:42382–42388

    PubMed  CAS  Google Scholar 

  168. Smith AN, Jouret F, Bord S, Borthwick KJ, Al-Lamki RS, Wagner CA, Ireland DC, Cormier-Daire V, Frattini A, Villa A, Kornak U, Devuyst O, Karet FE (2005) Vacuolar H+-ATPase d2 subunit: molecular characterization, developmental regulation, and localization to specialized proton pumps in kidney and bone. J Am Soc Nephrol 16:1245–1256

    PubMed  CAS  Google Scholar 

  169. Smith AN, Skaug J, Choate KA, Nayir A, Bakkaloglu A, Ozen S, Hulton SA, Sanjad SA, Al-Sabban EA, Lifton RP, Scherer SW, Karet FE (2000) Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nat Genet 26:71–75

    PubMed  CAS  Google Scholar 

  170. Song HK, Kim WY, Lee HW, Park EY, Han KH, Nielsen S, Madsen KM, Kim J (2007) Origin and fate of pendrin-positive intercalated cells in developing mouse kidney. J Am Soc Nephrol 18:2672–2682

    PubMed  Google Scholar 

  171. Soupene E, Inwood W, Kustu S (2004) Lack of the Rhesus protein Rh1 impairs growth of the green alga Chlamydomonas reinhardtii at high CO2. Proc Natl Acad Sci U S A 101:7787–7792

    PubMed  CAS  Google Scholar 

  172. Stahl RA, Kanz L, Maier B, Schollmeyer P (1986) Hyperchloremic metabolic acidosis with high serum potassium in renal transplant recipients: a cyclosporine A associated side effect. Clinical nephrology 25:245–248

    PubMed  CAS  Google Scholar 

  173. Stehberger P, Schulz N, Finberg KE, Karet FE, Giebisch G, Lifton RP, Geibel JP, Wagner CA (2003) Localization and regulation of the ATP6V0A4 (a4) vacuolar H+-ATPase subunit defective in an inherited form of distal renal tubular acidosis. J Am Soc Nephrol 14:3027–3038

    PubMed  CAS  Google Scholar 

  174. Stehberger PA, Shmukler BE, Stuart-Tilley AK, Peters LL, Alper SL, Wagner CA (2007) Distal renal tubular acidosis in mice lacking the AE1 (band3) Cl-/HCO -3 exchanger (slc4a1). J Am Soc Nephrol 18:1408–1418

    PubMed  CAS  Google Scholar 

  175. Sterling D, Alvarez BV, Casey JR (2002) The extracellular component of a transport metabolon. Extracellular loop 4 of the human AE1 Cl-/HCO -3 exchanger binds carbonic anhydrase IV. J Biol Chem 277:25239–25246

    PubMed  CAS  Google Scholar 

  176. Sterling D, Reithmeier RA, Casey JR (2001) A transport metabolon. Functional interaction of carbonic anhydrase II and chloride/bicarbonate exchangers. J Biol Chem 276:47886–47894

    PubMed  CAS  Google Scholar 

  177. Stover EH, Borthwick KJ, Bavalia C, Eady N, Fritz DM, Rungroj N, Giersch AB, Morton CC, Axon PR, Akil I, Al-Sabban EA, Baguley DM, Bianca S, Bakkaloglu A, Bircan Z, Chauveau D, Clermont MJ, Guala A, Hulton SA, Kroes H, Li VG, Mir S, Mocan H, Nayir A, Ozen S, Rodriguez SJ, Sanjad SA, Tasic V, Taylor CM, Topaloglu R, Smith AN, Karet FE (2002) Novel ATP6V1B1 and ATP6V0A4 mutations in autosomal recessive distal renal tubular acidosis with new evidence for hearing loss. J Med Genet 39:796–803

    PubMed  CAS  Google Scholar 

  178. Su Y, Blake-Palmer KG, Sorrell S, Javid B, Bowers K, Zhou A, Chang SH, Qamar S, Karet FE (2008) Human H+ATPase a4 subunit mutations causing renal tubular acidosis reveal a role for interaction with phosphofructokinase-1. Am J Physiol Renal Physiol 295:F950–F958

    PubMed  CAS  Google Scholar 

  179. Su Y, Zhou A, Al-Lamki RS, Karet FE (2003) The 'a' subunit of the V-type H+-ATPase interacts with phosphofructokinase-1 in humans. J Biol Chem 278:20013–20018

    PubMed  CAS  Google Scholar 

  180. Swarts HG, Koenderink JB, Willems PH, De Pont JJ (2005) The non-gastric H, K-ATPase is oligomycin-sensitive and can function as an H+, NH4(+)-ATPase. J Biol Chem 280:33115–33122

    PubMed  CAS  Google Scholar 

  181. Taher SM, Anderson RJ, McCartney R, Popovtzer MM, Schrier RW (1974) Renal tubular acidosis associated with toluene "sniffing". N Eng J Med 290:765–768

    Article  CAS  Google Scholar 

  182. Takito J, Hikita C, Al-Awqati Q (1996) Hensin, a new collecting duct protein involved in the in vitro plasticity of intercalated cell polarity. J Clin Invest 98:2324–2331

    PubMed  CAS  Google Scholar 

  183. Tanphaichitr VS, Sumboonnanonda A, Ideguchi H, Shayakul C, Brugnara C, Takao M, Veerakul G, Alper SL (1998) Novel AE1 mutations in recessive distal renal tubular acidosis. Loss-of-function is rescued by glycophorin A. J Clin Invest 102:2173–2179

    PubMed  CAS  Google Scholar 

  184. Teng-umnuay P, Verlander JW, Yuan W, Tisher CC, Madsen KM (1996) Identification of distinct subpopulations of intercalated cells in the mouse collecting duct. J Am Soc Nephrol 7:260–274

    PubMed  CAS  Google Scholar 

  185. Tessitore N, Ortalda V, Fabris A, D'Angelo A, Rugiu C, Oldrizzi L, Lupo A, Valvo E, Gammaro L, Loschiavo C et al (1985) Renal acidification defects in patients with recurrent calcium nephrolithiasis. Nephron 41:325–332

    PubMed  CAS  Google Scholar 

  186. Teta D, Bevington A, Brown J, Pawluczyk I, Harris K, Walls J (2003) Acidosis downregulates leptin production from cultured adipocytes through a glucose transport-dependent post-transcriptional mechanism. J Am Soc Nephrol 14:2248–2254

    PubMed  CAS  Google Scholar 

  187. Toye AM (2005) Defective kidney anion-exchanger 1 (AE1, Band 3) trafficking in dominant distal renal tubular acidosis (dRTA). Biochem Soc Symp 72:47–63

    PubMed  CAS  Google Scholar 

  188. Toye AM, Banting G, Tanner MJ (2004) Regions of human kidney anion exchanger 1 (kAE1) required for basolateral targeting of kAE1 in polarised kidney cells: mis-targeting explains dominant renal tubular acidosis (dRTA). J Cell Sci 117:1399–1410

    PubMed  CAS  Google Scholar 

  189. Toye AM, Bruce LJ, Unwin RJ, Wrong O, Tanner MJ (2002) Band 3 Walton, a C-terminal deletion associated with distal renal tubular acidosis, is expressed in the red cell membrane but retained internally in kidney cells. Blood 99:342–347

    PubMed  CAS  Google Scholar 

  190. Tsuruoka S, Schwartz GJ (1998) Adaptation of the outer medullary collecting duct to metabolic acidosis in vitro. Am J Physiol 275:F982–F990

    PubMed  CAS  Google Scholar 

  191. Ullrich KJ, Eigler FW (1958) Renal tubular hydrogen-ion secretion in mammals. Pflugers Arch 267:491–496

    PubMed  CAS  Google Scholar 

  192. Vallet M, Picard N, Loffing-Cueni D, Fysekidis M, Bloch-Faure M, Deschenes G, Breton S, Meneton P, Loffing J, Aronson PS, Chambrey R, Eladari D (2006) Pendrin regulation in mouse kidney primarily is chloride-dependent. J Am Soc Nephrol 17:2153–2163

    PubMed  CAS  Google Scholar 

  193. Van Huyen JP, Cheval L, Bloch-Faure M, Belair MF, Heudes D, Bruneval P, Doucet A (2008) GDF15 triggers homeostatic proliferation of acid-secreting collecting duct cells. J Am Soc Nephrol 19:1965–1974

    PubMed  Google Scholar 

  194. Vargas-Poussou R, Houillier P, Le Pottier N, Strompf L, Loirat C, Baudouin V, Macher MA, Dechaux M, Ulinski T, Nobili F, Eckart P, Novo R, Cailliez M, Salomon R, Nivet H, Cochat P, Tack I, Fargeot A, Bouissou F, Kesler GR, Lorotte S, Godefroid N, Layet V, Morin G, Jeunemaitre X, Blanchard A (2006) Genetic investigation of autosomal recessive distal renal tubular acidosis: evidence for early sensorineural hearing loss associated with mutations in the ATP6V0A4 gene. J Am Soc Nephrol 17:1437–1443

    PubMed  CAS  Google Scholar 

  195. Vasuvattakul S, Yenchitsomanus PT, Vachuanichsanong P, Thuwajit P, Kaitwatcharachai C, Laosombat V, Malasit P, Wilairat P, Nimmannit S (1999) Autosomal recessive distal renal tubular acidosis associated with Southeast Asian ovalocytosis. Kidney Int 56:1674–1682

    PubMed  CAS  Google Scholar 

  196. Verlander JW, Hassell KA, Royaux IE, Glapion DM, Wang ME, Everett LA, Green ED, Wall SM (2003) Deoxycorticosterone upregulates PDS (Slc26a4) in mouse kidney: role of pendrin in mineralocorticoid-induced hypertension. Hypertension 42:356–362

    PubMed  CAS  Google Scholar 

  197. Verlander JW, Kim YH, Shin W, Pham TD, Hassell KA, Beierwaltes WH, Green ED, Everett L, Matthews SW, Wall SM (2006) Dietary Cl(-) restriction upregulates pendrin expression within the apical plasma membrane of type B intercalated cells. Am J Physiol Renal Physiol 291:F833–F839

    PubMed  CAS  Google Scholar 

  198. Verlander JW, Miller RT, Frank AE, Royaux IE, Kim YH, Weiner ID (2003) Localization of the ammonium transporter proteins RhBG and RhCG in mouse kidney. Am J Physiol Renal Physiol 284:F323–F337

    PubMed  CAS  Google Scholar 

  199. Vieira FL, Malnic G (1968) Hydrogen ion secretion by rat renal cortical tubules as studied by an antimony microelectrode. Am J Physiol 214:710–718

    PubMed  CAS  Google Scholar 

  200. Vijayakumar S, Erdjument-Bromage H, Tempst P, Al-Awqati Q (2008) Role of integrins in the assembly and function of hensin in intercalated cells. J Am Soc Nephrol 19:1079–1091

    PubMed  CAS  Google Scholar 

  201. Vijayakumar S, Takito J, Hikita C, Al-Awqati Q (1999) Hensin remodels the apical cytoskeleton and induces columnarization of intercalated epithelial cells: processes that resemble terminal differentiation. J Cell Biol 144:1057–1067

    PubMed  CAS  Google Scholar 

  202. Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP (2004) Renal vacuolar H+-ATPase. Physiol Rev 84:1263–1314

    PubMed  CAS  Google Scholar 

  203. Wagner CA, Finberg KE, Stehberger PA, Lifton RP, Giebisch GH, Aronson PS, Geibel JP (2002) Regulation of the expression of the Cl-/anion exchanger pendrin in mouse kidney by acid–base status. Kidney Int 62:2109–2117

    PubMed  CAS  Google Scholar 

  204. Wall SM, Davis BS, Hassell KA, Mehta P, Park SJ (1999) In rat tIMCD, NH +4 uptake by Na+-K+-ATPase is critical to net acid secretion during chronic hypokalemia. Am J Physiol 277:F866–F874

    PubMed  CAS  Google Scholar 

  205. Wall SM, Fischer MP (2002) Contribution of the Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) to transepithelial transport of H(+), NH(4)(+), K(+), and Na(+) in rat outer medullary collecting duct. J Am Soc Nephrol 13:827–835

    PubMed  CAS  Google Scholar 

  206. Wall SM, Fischer MP, Mehta P, Hassell KA, Park SJ (2001) Contribution of the Na+-K+-2Cl- cotransporter NKCC1 to Cl- secretion in rat OMCD. Am J Physiol Renal Physiol 280:F913–F921

    PubMed  CAS  Google Scholar 

  207. Wall SM, Hassell KA, Royaux IE, Green ED, Chang JY, Shipley GL, Verlander JW (2002) Localization of Pendrin in Mouse Kidney. Am J Physiol Renal Physiol 284:F229–F241

    PubMed  Google Scholar 

  208. Wall SM, Kim YH, Stanley L, Glapion DM, Everett LA, Green ED, Verlander JW (2004) NaCl restriction upregulates renal Slc26a4 through subcellular redistribution: role in Cl- conservation. Hypertension 44:982–987

    PubMed  CAS  Google Scholar 

  209. Wall SM, Knepper MA, Hassell KA, Fischer MP, Shodeinde A, Shin W, Pham TD, Meyer JW, Lorenz JN, Beierwaltes WH, Dietz JR, Shull GE, Kim YH (2006) Hypotension in NKCC1 null mice: role of the kidneys. Am J Physiol Renal Physiol 290:F409–F416

    PubMed  CAS  Google Scholar 

  210. Walsh S, Turner CM, Toye A, Wagner C, Jaeger P, Laing C, Unwin R (2007) Immunohistochemical comparison of a case of inherited distal renal tubular acidosis (with a unique AE1 mutation) with an acquired case secondary to autoimmune disease. Nephrol Dial Transplant 22:807–812

    PubMed  Google Scholar 

  211. Watanabe S, Tsuruoka S, Vijayakumar S, Fischer G, Zhang Y, Fujimura A, Al-Awqati Q, Schwartz GJ (2005) Cyclosporin A produces distal renal tubular acidosis by blocking peptidyl prolyl cis-trans isomerase activity of cyclophilin. Am J Physiol 288:F40–F47

    CAS  Google Scholar 

  212. Wehrli P, Loffing-Cueni D, Kaissling B, Loffing J (2007) Replication of segment-specific and intercalated cells in the mouse renal collecting system. Histochemistry and Cell Biology 127:389–398

    PubMed  CAS  Google Scholar 

  213. Weiner ID (2004) The Rh gene family and renal ammonium transport. Curr Opin Nephrol Hypertens 13:533–540

    PubMed  CAS  Google Scholar 

  214. Weiner ID, Hamm LL (2007) Molecular mechanisms of renal ammonia transport. Annu Rev Physiol 69:317–340

    PubMed  CAS  Google Scholar 

  215. Williamson RC, Brown AC, Mawby WJ, Toye AM (2008) Human kidney anion exchanger 1 localisation in MDCK cells is controlled by the phosphorylation status of two critical tyrosines. J Cell Sci 121:3422–3432

    PubMed  CAS  Google Scholar 

  216. Winter C, Schulz N, Giebisch G, Geibel JP, Wagner CA (2004) Nongenomic stimulation of vacuolar H+-ATPases in intercalated renal tubule cells by aldosterone. Proc Nat Acad Sci USA 101:2636–2641

    PubMed  CAS  Google Scholar 

  217. Woo AL, Noonan WT, Schultheis PJ, Neumann JC, Manning PA, Lorenz JN, Shull GE (2003) Renal function in NHE3-deficient mice with transgenic rescue of small intestinal absorptive defect. Am J Physiol Renal Physiol 284:F1190–F1198

    PubMed  CAS  Google Scholar 

  218. Wrong O, Bruce LJ, Unwin RJ, Toye AM, Tanner MJ (2002) Band 3 mutations, distal renal tubular acidosis, and Southeast Asian ovalocytosis. Kidney Int 62:10–19

    PubMed  CAS  Google Scholar 

  219. Wrong OM, Feest TG, MacIver AG (1993) Immune-related potassium-losing interstitial nephritis: a comparison with distal renal tubular acidosis. Q J Med 86:513–534

    PubMed  CAS  Google Scholar 

  220. Yakupoglu HY, Corsenca A, Wahl P, Wuthrich RP, Ambuhl PM (2007) Posttransplant acidosis and associated disorders of mineral metabolism in patients with a renal graft. Transplantation 84:1151–1157

    PubMed  CAS  Google Scholar 

  221. Yang Q, Li G, Singh SK, Alexander EA, Schwartz JH (2006) Vacuolar H+-ATPase B1 subunit mutations that cause inherited distal renal tubular acidosis affect proton pump assembly and trafficking in inner medullary collecting duct cells. J Am Soc Nephrol 17:1858–1866

    PubMed  CAS  Google Scholar 

  222. Yip KP, Kurtz I (1995) NH3 permeability of principal cells and intercalated cells measured by confocal fluorescence imaging. Am J Physiol 269:F545–F550

    PubMed  CAS  Google Scholar 

  223. Zheng L, Kostrewa D, Berneche S, Winkler FK, Li XD (2004) The mechanism of ammonia transport based on the crystal structure of AmtB of Escherichia coli. Proc Natl Acad Sci U S A 101:17090–17095

    PubMed  CAS  Google Scholar 

  224. Zidi-Yahiaoui N, Mouro-Chanteloup I, D'Ambrosio AM, Lopez C, Gane P, Le van Kim C, Cartron JP, Colin Y, Ripoche P (2005) Human Rhesus B and Rhesus C glycoproteins: properties of facilitated ammonium transport in recombinant kidney cells. Biochem J 391:33–40

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in the laboratory of the authors has been supported by grants from the Swiss National Science Foundation and FP6 and FP7 work program projects of the European Community (EuReGene, EUNEFRON). N. Mohebbi is the recipient of an ERA-EDTA long-term fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten A. Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, C.A., Devuyst, O., Bourgeois, S. et al. Regulated acid–base transport in the collecting duct. Pflugers Arch - Eur J Physiol 458, 137–156 (2009). https://doi.org/10.1007/s00424-009-0657-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0657-z

Keywords

Navigation