Skip to main content
Log in

Participation of HERG channel cytoplasmic structures on regulation by the G protein-coupled TRH receptor

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Human ether-a-go-go-related gene (HERG) channels heterologously expressed in Xenopus oocytes are regulated by the activation of G protein-coupled hormone receptors that, like the thyrotropin-releasing hormone (TRH) receptor, activate phospholipase C. Previous work with serially deleted HERG mutants suggested that residues 326–345 located in the proximal domain of the channels amino terminus might be required for the hormonal modulation of HERG activation. Generation of new channel mutants deleted in this region further point to the amino acid sequence between residues 326 and 332 as a possible determinant of the TRH effects, but individual or combined single-point mutations in this sequence demonstrate that maintenance of its consensus sites for phosphorylation and/or interaction with regulatory components is not important for the modulatory response(s). The TRH-induced effects also remained unaltered when a basic amino acid cluster located between residues 362 and 366 is eliminated. Additionally, no effect of TRH was observed in channels carrying single-point mutations at the beginning of the intracellular loop linking transmembrane domains S4 and S5. Our results indicate that a correct structural arrangement of the amino terminal domains is essential for the hormone-induced modifications of HERG activation. They also suggest that the hormonal regulatory action is transmitted to the transmembrane channel core through interactions between the cytoplasmic domains and the initial portion of the S4–S5 linker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alonso-Ron C, de la Peña P, Miranda P, Domínguez P, Barros F (2008) Thermodynamic and kinetic properties of amino-terminal and S4–S5 loop HERG channel mutants under steady-state conditions. Biophys J 94:3893–3911

    Article  PubMed  CAS  Google Scholar 

  2. Barros F, Villalobos C, García-Sancho J, del Camino D, de la Peña P (1994) The role of the inwardly rectifying K+ current in resting potential and thyrotropin-releasing hormone-induced changes in cell excitability of GH3 rat anterior pituitary cells. Pflügers Arch 426:221–230

    Article  PubMed  CAS  Google Scholar 

  3. Barros F, del Camino D, Pardo LA, Palomero T, Giráldez T, de la Peña P (1997) Demonstration of an inwardly rectifying K+ current component modulated by thyrotropin-releasing hormone and caffeine in GH3 rat anterior pituitary cells. Pflügers Arch 435:119–129

    Article  PubMed  CAS  Google Scholar 

  4. Barros F, Gómez-Varela D, Viloria CG, Palomero T, Giráldez T, de la Peña P (1998) Modulation of human erg K+ channel gating by activation of a G protein-coupled receptor and protein kinase C. J Physiol (Lond) 511:333–346

    Article  CAS  Google Scholar 

  5. Bauer CK, Schäfer R, Schiemann D, Reid G, Hanganu I, Schwarz JR (1999) A functional role of the erg-like inward-rectifying K+ current in prolactin secretion from rat lactotrophs. Mol Cell Endocrinol 148:37–45

    Article  PubMed  CAS  Google Scholar 

  6. Bian J, Cui J, McDonald TV (2001) HERG K+ channel activity is regulated by changes in phosphatidyl inositol 4,5-bisphosphate. Circ Res 89:1168–1176

    Article  PubMed  CAS  Google Scholar 

  7. Cayabyab FS, Schlichter LC (2002) Regulation of an ERG K+ current by Src tyrosine kinase. J Biol Chem 277:13673–13681

    Article  PubMed  CAS  Google Scholar 

  8. Cherubini A, Taddei GL, Crociani O, Paglierani M, Buccoliero AM, Fontana L, Noci I, Borri P, Borrani E, Giachi M, Becchetti A, Rosati B, Wanke E, Olivotto M, Arcangeli A (2000) HERG potassium channels are more frequently expressed in human endometrial cancer as compared to non-cancerous endometrium. Br J Cancer 83:1722–1729

    Article  PubMed  CAS  Google Scholar 

  9. Chiang C, Roden DM (2000) The long QT syndromes: genetic basis and clinical implications. J Am Coll Cardiol 36:1–12

    Article  PubMed  CAS  Google Scholar 

  10. de la Peña P, Delgado LM, del Camino D, Barros F (1992) Cloning and expression of the thyrotropin-releasing hormone receptor from GH3 rat anterior pituitary cells. Biochem J 284:891–899

    PubMed  Google Scholar 

  11. de la Peña P, Delgado L, del Camino D, Barros F (1992) Two isoforms of the thyrotropin-releasing hormone receptor generated by alternative splicing have indistinguishable functional properties. J Biol Chem 267:25703–25708

    PubMed  Google Scholar 

  12. de la Peña P, del Camino D, Pardo LA, Domínguez P, Barros F (1995) Gs couples thyrotropin-releasing hormone receptors expressed in Xenopus oocytes to phospholipase C. J Biol Chem 270:3554–3559

    Article  PubMed  Google Scholar 

  13. Emmi A, Wenzel HJ, Schwartzkroin PA, Taglialatela M, Castaldo P, Bianchi L, Nerbonne J, Robertson GA, Janigro D (2000) Do glia have heart? Expression and functional role for Ether-a-go-go currents in hippocampal astrocytes. J Neurosci 20:3915–3925

    PubMed  CAS  Google Scholar 

  14. Finlayson K, Witchel HJ, McCulloch J, Sharkey J (2004) Acquired QT interval prolongation and HERG: implications for drug discovery and development. Eur J Pharmacol 500:129–142

    Article  PubMed  CAS  Google Scholar 

  15. Gómez-Varela D, de la Peña P, García J, Giráldez T, Barros F (2002) Influence of amino-terminal structures on kinetic transitions between several closed and open states in human erg K+ channels. J Membr Biol 187:117–133

    Article  PubMed  CAS  Google Scholar 

  16. Gómez-Varela D, Barros F, Viloria CG, Giráldez T, Manso DG, Dupuy SG, Miranda P, de la Peña P (2003) Relevance of the proximal domain in the amino-terminus of HERG channels for regulation by a phospholipase C-coupled hormone receptor. FEBS Lett 535:125–130

    Article  PubMed  CAS  Google Scholar 

  17. Gómez-Varela D, Giráldez T, de la Peña P, Dupuy SG, García-Manso D, Barros F (2003) Protein kinase C is necessary for recovery from the thyrotropin-releasing hormone-induced r-ERG current reduction in GH3 rat anterior pituitary cells. J Physiol (Lond) 547:913–929

    Article  CAS  Google Scholar 

  18. Jian M, Dun W, Fan J-S, Tseng G-N (1999) Use-dependent ‘agonist’ effect of azimilide on the HERG channel. J Pharmacol Exp Ther 291:1324–1336

    Google Scholar 

  19. Kagan A, Melman YF, Krumerman A, McDonald TV (2002) 14-3-3 amplifies and prolongs adrenergic stimulation of HERG K+ channel activity. EMBO J 8:1889–1898

    Article  Google Scholar 

  20. Keating MT, Sanguinetti MC (2001) Molecular and cellular mechanisms of cardiac arrhytmias. Cell 104:569–580

    Article  PubMed  CAS  Google Scholar 

  21. Kemp BE, Pearson RB (1990) Protein kinase recognition sequence motifs. Trends Biochem Sci 15:342–346

    Article  PubMed  CAS  Google Scholar 

  22. Kennelly PJ, Krebs EG (1991) Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol Chem 266:15555–15558

    PubMed  CAS  Google Scholar 

  23. Kiehn J (2000) Regulation of the cardiac repolarizing HERG potassium channel by protein kinase A. Trends Cardiovasc Med 10:205–209

    Article  PubMed  CAS  Google Scholar 

  24. Long SB, Campbell EB, MacKinnon R (2005) Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309:903–908

    Article  PubMed  CAS  Google Scholar 

  25. Miranda P, Giráldez T, de la Peña P, Manso DG, Alonso-Ron C, Gómez-Varela D, Domínguez P, Barros F (2005) Specificity of TRH receptor coupling to G-proteins for regulation of ERG K+ channels in GH3 rat anterior pituitary cells. J Physiol (Lond) 566:717–736

    Article  CAS  Google Scholar 

  26. Morais-Cabral JH, Lee A, Cohen SL, Chait BT, Li M, MacKinnon R (1998) Crystal structure and functional analysis of the HERG potassium channel N terminus: a eukaryotic PAS domain. Cell 95:649–655

    Article  PubMed  CAS  Google Scholar 

  27. Morita H, Wu J, Zipes DP (2008) The QT syndromes: long and short. Lancet 372:750–763

    Article  PubMed  CAS  Google Scholar 

  28. Overholt JL, Ficker E, Yang T, Shams H, Bright GR, Prabhakar NR (2000) HERG-like potassium current regulates the resting membrane potential in glomus cells of the rabbit carotid body. J Neurophysiol 83:1150–1157

    PubMed  CAS  Google Scholar 

  29. Redfern WS, Carlsson L, Davis AS, Lynch WG, MacKenzie I, Palethorpe S, Siegl PKS, Strang I, Sullivan AT, Wallis R, Camm AJ, Hammond TG (2002) Relationship between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res 58:32–45

    Article  CAS  Google Scholar 

  30. Roden DM, Lazzara R, Rosen M, Schwartz PJ, Towbin J, Vincent GM (1996) Multiple mechanisms in the long-QT syndrome. Current knowledge, gaps, and future directions. Circulation 94:1996–2012

    PubMed  CAS  Google Scholar 

  31. Rosati B, Marchetti P, Crociani O, Lecchi M, Lupi R, Arcangeli A, Olivotto M, Wanke E (2000) Glucose- and arginine-induced insulin secretion by human pancreatic β-cells: the role of HERG K+channels in firing and release. FASEB J 14:2601–2610

    Article  PubMed  CAS  Google Scholar 

  32. Saenen JB, Labro AJ, Raes A, Snyders DJ (2006) Modulation of HERG gating by a charge cluster in the N-terminal proximal domain. Biophys J 91:4381–4391

    Article  PubMed  CAS  Google Scholar 

  33. Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG channel encodes the IKr potassium channel. Cell 81:299–307

    Article  PubMed  CAS  Google Scholar 

  34. Sanguinetti MC, Xu QP (1999) Mutations of the S4–S5 linker alter activation properties of HERG potassium channels expressed in Xenopus oocytes. J Physiol (Lond) 514:667–675

    Article  CAS  Google Scholar 

  35. Schäfer R, Wulfsen I, Behrens S, Weinsberg F, Bauer CK, Schwarz JR (1999) The erg-like current in rat lactotrophs. J Physiol (Lond) 518:401–416

    Article  Google Scholar 

  36. Schledermann W, Wulfsen I, Schwarz JR, Bauer CK (2001) Modulation of rat erg1, erg2, erg3 and HERG K+ currents by thyrotropin-releasing hormone in anterior pituitary cells via the native signal cascade. J Physiol (Lond) 532:143–163

    Article  CAS  Google Scholar 

  37. Schwartz PJ (2005) Management of long QT syndrome. Nat Clin Pract Cardiovasc Med 2:346–351

    Article  PubMed  Google Scholar 

  38. Thomas D, Zhang W, Wu K, Wimmer A-B, Gut B, Wendt-Nordahl G, Kathöfer S, Kreye VAW, Katus HA, Schoels W, Kiehn J, Karle CA (2003) Regulation of potassium channel activation by protein kinase C independent of direct phosphorylation of the channel protein. Cardiovasc Res 59:14–26

    Article  PubMed  CAS  Google Scholar 

  39. Thomas D, Kiehn J, Katus HA, Karle CA (2004) Adrenergic regulation of the rapid component of the cardiac delayed rectifier potassium current, IKr, and the underlying hERG ion channel. Basic Res Cardiol 99:279–287

    Article  PubMed  CAS  Google Scholar 

  40. Tristani-Firouzi M, Chen J, Sanguinetti MC (2002) Interactions between S4–S5 linker and S6 transmembrane domain modulate gating of HERG K+ channels. J Biol Chem 277:18994–19000

    Article  PubMed  CAS  Google Scholar 

  41. Trudeau MC, Warmke JW, Ganetzky B, Robertson GA (1995) HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269:92–95

    Article  PubMed  CAS  Google Scholar 

  42. Viloria CG, Barros F, Giráldez T, Gómez-Varela D, de la Peña P (2000) Differential effects of amino-terminal distal and proximal domains in the regulation of human erg K+ channel gating. Biophys J 79:231–246

    Article  PubMed  CAS  Google Scholar 

  43. Viskin S (1999) Long QT syndromes and torsade de pointes. Lancet 354:1625–1633

    Article  PubMed  CAS  Google Scholar 

  44. Wang J, Trudeau MC, Zappia AM, Robertson GA (1998) Regulation of deactivation by an amino terminal domain in human ether-a-go-go-related gene potassium channels. J Gen Physiol 112:637–647

    Article  PubMed  CAS  Google Scholar 

  45. Warmke JW, Ganetzky B (1994) A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci U S A 91:3438–3442

    Article  PubMed  CAS  Google Scholar 

  46. Zhang Y, Wang H, Wang J, Han H, Nattel S, Wang Z (2003) Normal function of HERG K+ channels expressed in HEK293 cells requires basal protein kinase B activity. FEBS Lett 534:125–132

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants SAF2003-00329 from the Ministerio de Ciencia y Tecnología, BFU2006-10936 from the Ministerio de Educación y Ciencia of Spain (both partially cofinanced by FEDER European Funds) and IB05-002 from the Principado de Asturias (Spain). C.A.R. and D.G.M. are predoctoral fellows from the Spanish Ministerio de Ciencia y Tecnología (refs. BES-2004-3872 and AP2000-4363). P.M. holds a predoctoral fellowship from FICYT of Asturias (ref. BP03-108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Barros.

Electronic supplementary material

Below is the image is a link to a high resolution version

Supplemental Fig. 1

Deactivation properties of different constructs and effect of structural modifications in the amino terminus and the S4-S5 loop on TRH-induced acceleration of HERG deactivation. (A) Summary of fast deactivation rates at −100 mV. We considered for analysis only the time constants of the fast deactivation current that corresponds to the major component of current at negative voltages and that shows minimal contamination with residual oocyte chloride currents triggered by the hormone treatment. The rates of deactivation were determined from negative-amplitude biexponential fits to the decaying phase of tail currents at −100 mV as detailed in ref [1] of the paper. (B) Comparison of TRH effects on deactivation kinetics in channels carrying different structural alterations in the amino-terminus. Bars in the histogram represent TRH-induced reductions in the magnitude of fast deactivation time constant at −100 mV as compared to that observed in wild-type channels, that amounted 22.6 ± 3.7% (n = 24) in this set of experiments. In this case, a 50% reduction corresponds to a doubled speed of closing. (C) Comparison of TRH effects on deactivation kinetics in channels carrying single-point mutations in the S4–S5 loop (residues 540–546) and the 326–331 sequence of the proximal domain (GIF 96 kb)

High resolution image file (TIF 1231 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alonso-Ron, C., Barros, F., Manso, D.G. et al. Participation of HERG channel cytoplasmic structures on regulation by the G protein-coupled TRH receptor. Pflugers Arch - Eur J Physiol 457, 1237–1252 (2009). https://doi.org/10.1007/s00424-008-0599-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0599-x

Keywords

Navigation