Skip to main content

Advertisement

Log in

Protective role of NHE-3 inhibition in rat renal transplantation undergoing acute rejection

  • Integrative Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Acute rejection in renal transplantation disturbs solute and volume maintenance in humans accompanied by delayed graft function and poor prognosis. We recently reported that decreased expression and function of Na+/H+ exchanger type 3 (NHE-3) in proximal tubules and epithelial Na+ channels and aquaporin 2 in collecting ducts are major mechanisms involved in Na+ and water imbalances shortly after transplantation in rat undergoing acute rejection. We performed kidney transplantations in rats with bilaterally nephrectomized recipients with acute rejection and, in addition, systemically administered a specific inhibitor of NHE-3 (NHE-I). NHE inhibition in acute renal failure was shown to improve tubular function and recovery. The aim of this therapy was to reduce energy consumption of the graft and preserve NHE-3 function. Imbalances in electrolyte excretion declined in NHE-I-treated animals and NHE-3 activity was preserved. Observed NHE-I-dependent changes in electrolyte excretion, polyuria, and reduced protein reabsorption in the acute postoperative phase are predictors of favorable graft outcome in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Batlle DC, Mozes MF, Manaligod J et al (1981) The pathogenesis of hyperchloremic metabolic acidosis associated with kidney transplantation. Am J Med 70:786–796

    Article  PubMed  CAS  Google Scholar 

  2. Curtis JJ (1994) Hypertension following kidney transplantation. Am J Kidney Dis 23:471–475

    PubMed  CAS  Google Scholar 

  3. Heering P, Degenhardt S, Grabensee B (1996) Tubular dysfunction following kidney transplantation. Nephron 74:501–511

    PubMed  CAS  Google Scholar 

  4. Ogden AD, Sitprija V, Holmes JH (1965) Function of the renal homograft in man immediately after transplantation. Am J Med 38:873–882

    Article  PubMed  CAS  Google Scholar 

  5. Beckerhoff R, Uhlschmid G, Vetter W et al (1974) Plasma renin and aldosterone after renal transplantation. Kidney Int 5:39–46

    Article  PubMed  CAS  Google Scholar 

  6. Henderson LW, Nolph KD, Puschett JB et al (1968) Proximal tubular malfunction for diuresis after renal homotransplantation. New Engl J Med 278:467–473

    Article  PubMed  CAS  Google Scholar 

  7. Velic A, Gabriëls G, Hirsch JR et al (2005) Acute rejection after rat renal transplantation leads to downregulation of Na+ and water channels in the collecting duct. Am J Transplant 5:1276–1285

    Article  PubMed  CAS  Google Scholar 

  8. Velic A, Hirsch JR, Bartels J et al (2004) Renal transplantation modulates expression and function of receptors and transporters of rat proximal tubules. J Am Soc Nephrol 15:967–977

    Article  PubMed  CAS  Google Scholar 

  9. Matteucci E, Carmellini M, Mosca F et al (1999) The contribution of Na+/H+ exchange to postreperfusion injury and recovery of transplanted kidney. Biomed Pharmacother 53:438–444

    Article  PubMed  CAS  Google Scholar 

  10. de Seigneux S, Nielsen J, Olesen ET et al (2007) Long-term aldosterone treatment induces decreased apical but increased basolateral expression of AQP2 in CCD of rat kidney. Am J Physiol Renal Physiol 293:F87–F99

    Article  PubMed  CAS  Google Scholar 

  11. Alexander RT, Malevanets A, Durkan AM et al (2007) Membrane curvature alters the activation kinetics of the epithelial Na+/H+ exchanger, NHE3. J Biol Chem 282:7376–7384

    Article  PubMed  CAS  Google Scholar 

  12. Hropot M, Juretschke HP, Langer KH (2001) S3226, a novel NHE3 inhibitor, attenuates ischemia-induced acute renal failure in rats. Kidney Int 60:2283–2289

    Article  PubMed  CAS  Google Scholar 

  13. Gekle M, Drumm K, Mildenberger S (1999) Inhibition of Na+–H+ exchange impairs receptor-mediated albumin endocytosis in renal proximal tubule-derived epithelial cells from opossum. J Physiol 520:709–721

    Article  PubMed  CAS  Google Scholar 

  14. Gekle M, Volker K, Mildenberger S (2004) NHE3 Na+/H+ exchanger supports proximal tubular protein reabsorption in vivo. Am J Physiol Renal Physiol 287:F469–F473

    Article  PubMed  CAS  Google Scholar 

  15. Wohlfarth V, Drumm K, Mildenberger S et al (2003) Protein uptake disturbs collagen homeostasis in proximal tubule derived cells. Kidney Int 84:S103–S109

    Article  CAS  Google Scholar 

  16. Drumm K, Gassner B, Silbernagl S et al (2001) Inhibition of Na+/H+ exchange decreases albumin-induced NF-kB activation in renal proximal tubular cell lines (OK and LLC-PK1 cells). Eur J Med Res 6:422–432

    PubMed  CAS  Google Scholar 

  17. Eddy AA (1996) Expression of genes that promote renal interstitial fibrosis in rats with proteinuria. Kidney Int 54:S49–S54

    CAS  Google Scholar 

  18. Drumm K, Lee E, Stanners S et al (2003) Albumin and glucose effects on cell growth parameters, albumin uptake and Na+/H+-exchanger isoform 3 in OK cells. Cell Physiol Biochem 13:199–206

    Article  PubMed  CAS  Google Scholar 

  19. Christensen EI, Birn H (2001) Megalin and cubilin: synergistic endocytic receptors in renal proximal tubule. Am J Physiol Renal Physiol 280:F562–F573

    PubMed  CAS  Google Scholar 

  20. Verroust PJ, Birn H, Nielsen R et al (2002) The tandem endocytic receptors megalin and cubilin are important proteins in renal pathology. Kidney Int 62:745–56

    Article  PubMed  CAS  Google Scholar 

  21. Matteucci E, Carmellini M, Bertoni C et al (1998) Urinary excretion rates of multiple renal indicators after kidney transplantation: clinical significance for early graft outcome. Ren Fail 20:325–330

    PubMed  CAS  Google Scholar 

  22. Bleich M, Sievers B, Himmerkus N et al (2005) Acute inhibition of NHE3 and kidney function. Pflügers Arch 1(449 Suppl):19–40

    Google Scholar 

  23. Sievers B, Shan Q, Himmerkus N et al (2005) Renal compensation of pharmacological NHE3 knockout. Pflügers Arch 1(449 Suppl):91–110

    Google Scholar 

  24. Gabriëls G, August C, Grisk O et al (2003) Impact of renal transplantation on small vessel reactivity. Transplantation 75:689–697

    Article  PubMed  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  26. Schlatter E, Haxelmans S, Ankorina I (1995) Regulation of Na+/H+ exchange by diadenosine polyphosphates, angiotensin II, and vasopressin in rat cortical collecting duct. J Am Soc Nephrol 6:1223–1229

    PubMed  CAS  Google Scholar 

  27. Schäfer JA, Watkins ML, Li L et al (1997) A simplified method for isolation of large numbers of defined nephron segments. Am J Physiol 273:F650–F657

    PubMed  Google Scholar 

  28. Schlatter E, Fröbe U, Greger R (1992) Ion conductances of isolated cortical collecting duct cells. Pflügers Arch 421:381–387

    Article  PubMed  CAS  Google Scholar 

  29. Schlatter E, Haxelmans S, Ankorina I (1996) Correlation between intracellular activities of Ca2+and Na+ in rat cortical collecting duct—a possible coupling mechanism between Na+-K+-ATPase and basolateral K+ conductance. Kidney Blood Press Res 19:24–31

    Article  PubMed  CAS  Google Scholar 

  30. Manfredi G, Yang L, Gajewski CD et al (2002) Measurements of ATP in mammalian cells. Methods 26:317–26

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The excellent technical help from Mrs. Ute Neugebauer is gratefully acknowledged. This study was supported by a grant from the Else-Kröner-Fresenius Foundation (P22/05//A43/05//F00) to E.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eberhard Schlatter.

Additional information

Stefan Reuter and Ana Velic contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reuter, S., Velic, A., Edemir, B. et al. Protective role of NHE-3 inhibition in rat renal transplantation undergoing acute rejection. Pflugers Arch - Eur J Physiol 456, 1075–1084 (2008). https://doi.org/10.1007/s00424-008-0484-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0484-7

Keywords

Navigation