Skip to main content
Log in

Amt/MEP/Rh proteins conduct ammonia

  • Invited Review
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The structure determination of the ammonium transport protein AmtB from Escherichia coli strongly indicates that the members of the ubiquitous ammonium transporter/methylamine permease/Rhesus (Amt/MEP/Rh) protein family are ammonia-conducting channels rather than ammonium ion transporters. The most conserved part of these proteins, apart from the common overall structure with 11 transmembrane helices, is the pore lined by hydrophobic side chains except for two highly conserved histidine residues. A high-affinity ion-binding site specific for ammonium is present at the extracellular pore entry of the Amt/MEP proteins. It is proposed to play an important role in enhancing net transport at very low external ammonium concentrations and to provide discrimination against water. The site is not conserved in the animal Rhesus proteins which are implicated in ammonium homeostasis and saturate at millimolar ammonium concentrations. Many aspects of the biological function of these ammonia channels are still poorly understood and further studies in cellular systems are needed. Likewise, studies with purified, reconstituted Amt/MEP/Rh proteins will be needed to resolve open mechanistic questions and gain a more quantitative understanding of the conduction mechanism in general and for different subfamily representatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1

Similar content being viewed by others

Notes

  1. Here, the term ammonium is used when no discrimination between NH3 and NH +4 is made. When specificity is required, chemical symbols or the terms ammonia and ammonium ion are used.

References

  1. Agre P (2004) Aquaporin water channels (Nobel Lecture). Angew Chem Int Ed Engl 43:4278–4290

    Article  Google Scholar 

  2. Bakouh N, Benjelloun F, Hulin P, Brouillard F, Edelman A, Cherif-Zahar B, Planelles G (2004) NH3 is involved in the NH +4 transport induced by the functional expression of the human Rh C glycoprotein. J Biol Chem 279:15975–15983

    Article  Google Scholar 

  3. Biswas K, Morschhauser J (2005) The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans. Mol Microbiol 56:649–669

    Article  Google Scholar 

  4. Blakey D, Leech A, Thomas GH, Coutts G, Findlay K, Merrick M (2002) Purification of the Escherichia coli ammonium transporter AmtB reveals a trimeric stoichiometry. Biochem J 364:527–535

    Article  Google Scholar 

  5. Boldt M, Burckhardt G, Burckhardt BC (2003) NH(4)(+) conductance in Xenopus laevis oocytes. III. Effect of NH(3). Pflugers Arch 446:652–657

    PubMed  Google Scholar 

  6. Chin J, Oh J, Jon SY, Park SH, Walsdorff C, Stranix B, Ghoussoub A, Lee SJ, Chung HJ, Park SM, Kim K (2002) Tuning and dissecting electronic and steric effects in ammonium receptors: nonactin vs artificial receptors. J Am Chem Soc 124:5374–5379

    Article  Google Scholar 

  7. Cooper GJ, Zhou Y, Bouyer P, Grichtchenko II, Boron WF (2002) Transport of volatile solutes through AQP1. J Physiol 542:17–29

    Article  Google Scholar 

  8. Coutts G, Thomas G, Blakey D, Merrick M (2002) Membrane sequestration of the signal transduction protein GlnK by the ammonium transporter AmtB. EMBO J 21:536–545

    Article  Google Scholar 

  9. D’Apuzzo E, Rogato A, Simon-Rosin U, El AH, Barbulova A, Betti M, Dimou M, Katinakis P, Marquez A, Marini AM, Udvardi MK, Chiurazzi M (2004) Characterization of three functional high-affinity ammonium transporters in Lotus japonicus with differential transcriptional regulation and spatial expression. Plant Physiol 134:1763–1774

    Article  Google Scholar 

  10. Eigen M (2005) Proton transfer, acid–base catalysis, and enzymatic hydrolysis. Angew Chem Int Ed Engl 3:1–72

    Article  Google Scholar 

  11. Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, von WN (1999) Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11:937–948

    Article  Google Scholar 

  12. Hackette SL, Skye GE, Burton C, Segel IH (1970) Characterization of an ammonium transport system in filamentous fungi with methylammonium-14C as the substrate. J Biol Chem 245:4241–4250

    PubMed  Google Scholar 

  13. Handlogten ME, Hong SP, Zhang L, Vander AW, Steinbaum ML, Campbell-Thompson M, Weiner ID (2005) Expression of the ammonia transporter proteins, Rh B Glycoprotein and Rh C Glycoprotein, in the intestinal tract. Am J Physiol Gastrointest Liver Physiol 288(5):G1036–G1047

    Article  Google Scholar 

  14. Hill WG, Zeidel ML (2000) Reconstituting the barrier properties of a water-tight epithelial membrane by design of leaflet-specific liposomes. J Biol Chem 275:30176–30185

    Article  Google Scholar 

  15. Hille B (2001) Ion channels of excitable membranes. Sinauer Associates, Sunderland, p 354

    Google Scholar 

  16. Huang CH, Liu PZ (2001) New insights into the Rh superfamily of genes and proteins in erythroid cells and nonerythroid tissues. Blood Cells Mol Dis 27:90–101

    Article  Google Scholar 

  17. Javelle A, Severi E, Thornton J, Merrick M (2004) Ammonium sensing in Escherichia coli. Role of the ammonium transporter AmtB and AmtB–GlnK complex formation. J Biol Chem 279:8530–8538

    Article  Google Scholar 

  18. Javelle A, Thomas G, Marini AM, Kramer R, Merrick M (2005) In vivo functional characterisation of the E. coli ammonium channel AmtB: evidence for metabolic coupling of AmtB to glutamine synthetase. Biochem J 390(Pt 1):215–222

    Article  Google Scholar 

  19. Khademi S, O’Connell J III, Remis J, Robles-Colmenares Y, Miercke LJ, Stroud RM (2004) Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A. Science 305:1587–1594

    Article  Google Scholar 

  20. Kikeri D, Sun A, Zeidel ML, Hebert SC (1989) Cell membranes impermeable to NH3. Nature 339:478–480

    Article  Google Scholar 

  21. Kleiner D (1985) Bacterial ammonium transport. FEMS Microbiol Rev 32:87–100

    Article  Google Scholar 

  22. Lande MB, Donovan JM, Zeidel ML (1995) The relationship between membrane fluidity and permeabilities to water, solutes, ammonia, and protons. J Gen Physiol 106:67–84

    Article  Google Scholar 

  23. Ludewig U (2004) Electroneutral ammonium transport by basolateral rhesus B glycoprotein. J Physiol 559:751–759

    PubMed  Google Scholar 

  24. Ludewig U, von Wiren N, Rentsch D, Frommer WB (2001) Rhesus factors and ammonium: a function in efflux?. Genome Biol 2:1–5

    Article  Google Scholar 

  25. Ludewig U, Wilken S, Wu B, Jost W, Obrdlik P, El BM, Marini AM, Andre B, Hamacher T, Boles E, von WN, Frommer WB (2003) Homo- and hetero-oligomerization of ammonium transporter-1 NH4 uniporters. J Biol Chem 278:45603–45610

    Article  Google Scholar 

  26. Marini AM, Andre B (2000) In vivo N-glycosylation of the mep2 high-affinity ammonium transporter of Saccharomyces cerevisiae reveals an extracytosolic N-terminus. Mol Microbiol 38:552–564

    Article  Google Scholar 

  27. Marini AM, Matassi G, Raynal V, Andre B, Cartron JP, Cherif-Zahar B (2000) The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nat Genet 26:341–344

    Article  Google Scholar 

  28. Marini AM, Soussi-Boudekou S, Vissers S, Andre B (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 17:4282–4293

    PubMed  Google Scholar 

  29. Marini AM, Urrestarazu A, Beauwens R, Andre B (1997) The Rh (rhesus) blood group polypeptides are related to NH +4 transporters. Trends Biochem Sci 22:460–461

    Article  Google Scholar 

  30. Meier-Wagner J, Nolden L, Jakoby M, Siewe R, Kramer R, Burkovski A (2001) Multiplicity of ammonium uptake systems in Corynebacterium glutamicum: role of Amt and AmtB. Microbiology 147:135–143

    PubMed  Google Scholar 

  31. Monahan BJ, Unkles SE, Tsing IT, Kinghorn JR, Hynes MJ, Davis MA (2002) Mutation and functional analysis of the Aspergillus nidulans ammonium permease MeaA and evidence for interaction with itself and MepA. Fungal Genet Biol 36:35–46

    Article  Google Scholar 

  32. Nakhoul NL, Dejong H, Abdulnour-Nakhoul SM, Boulpaep EL, Hering-Smith K, Hamm LL (2005) Characteristics of renal Rhbg as an NH4(+) transporter. Am J Physiol Renal Physiol 288:F170–F181

    Article  Google Scholar 

  33. Nakhoul NL, Hamm LL (2004) Non-erythroid Rh glycoproteins: a putative new family of mammalian ammonium transporters. Pflugers Arch 447:807–812

    Article  Google Scholar 

  34. Ripoche P, Bertrand O, Gane P, Birkenmeier C, Colin Y, Cartron JP (2004) Human Rhesus-associated glycoprotein mediates facilitated transport of NH(3) into red blood cells. Proc Natl Acad Sci USA 101:17222–17227

    Article  Google Scholar 

  35. Scrutton NS, Raine AR (1996) Cation–pi bonding and amino–aromatic interactions in the biomolecular recognition of substituted ammonium ligands. Biochem J 319(Pt 1):1–8

    PubMed  Google Scholar 

  36. Sehy JV, Banks AA, Ackerman JJ, Neil JJ (2002) Importance of intracellular water apparent diffusion to the measurement of membrane permeability. Biophys J 83:2856–2863

    PubMed  Google Scholar 

  37. Soupene E, Chu T, Corbin RW, Hunt DF, Kustu S (2002) Gas channels for NH(3): proteins from hyperthermophiles complement an Escherichia coli mutant. J Bacteriol 184:3396–3400

    Article  Google Scholar 

  38. Soupene E, He L, Yan D, Kustu S (1998) Ammonia acquisition in enteric bacteria: physiological role of the ammonium/methylammonium transport B (AmtB) protein. Proc Natl Acad Sci USA 95:7030–7034

    Article  Google Scholar 

  39. Soupene E, Lee H, Kustu S (2002) Ammonium/methylammonium transport (Amt) proteins facilitate diffusion of NH3 bidirectionally. Proc Natl Acad Sci USA 99:3926–3931

    Article  Google Scholar 

  40. Soupene E, Ramirez RM, Kustu S (2001) Evidence that fungal MEP proteins mediate diffusion of the uncharged species NH(3) across the cytoplasmic membrane. Mol Cell Biol 21:5733–5741

    Article  Google Scholar 

  41. Verkman AS (1995) Optical methods to measure membrane transport processes. J Membr Biol 148:99–110

    PubMed  Google Scholar 

  42. von Wirén N, Merrick M (2004) Regulation and function of ammonium carriers in bacteria, fungi, and plants. Trends Curr Genet 9:95–120

    Google Scholar 

  43. Wall SM (2003) Mechanisms of NH +4 and NH3 transport during hypokalemia. Acta Physiol Scand 179:325–330

    Article  Google Scholar 

  44. Weiner ID (2004) The Rh gene family and renal ammonium transport. Curr Opin Nephrol Hypertens 13:533–540

    PubMed  Google Scholar 

  45. Weiner ID, Verlander JW (2003) Renal and hepatic expression of the ammonium transporter proteins, Rh B Glycoprotein and Rh C Glycoprotein. Acta Physiol Scand 179:331–338

    Article  Google Scholar 

  46. Westhoff CM (2004) The Rh blood group system in review: a new face for the next decade. Transfusion 44:1663–1673

    Article  Google Scholar 

  47. Westhoff CM, Ferreri-Jacobia M, Mak DO, Foskett JK (2002) Identification of the erythrocyte Rh blood group glycoprotein as a mammalian ammonium transporter. J Biol Chem 277:12499–12502

    Article  Google Scholar 

  48. Westhoff CM, Siegel DL, Burd CG, Foskett JK (2004) Mechanism of genetic complementation of ammonium transport in yeast by human erythrocyte Rh-associated glycoprotein. J Biol Chem 279:17443–17448

    Article  Google Scholar 

  49. Zheng L, Kostrewa D, Bernèche S, Winkler FK, Li X-D (2004) The crystal structure of AmtB of E. coli suggests a mechanism for ammonia transport. Proc Natl Acad Sci USA 101:17090–17095

    Article  Google Scholar 

Download references

Acknowledgments

I thank Lei Zheng for providing Fig. 1 and Xiao-Dan Li and Lei Zheng for critical comments on the manuscript. The author’s research was supported by the Swiss National Science Foundation within the framework of the National Center of Competence in Research (NCCR) in Structural Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fritz K. Winkler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winkler, F.K. Amt/MEP/Rh proteins conduct ammonia. Pflugers Arch - Eur J Physiol 451, 701–707 (2006). https://doi.org/10.1007/s00424-005-1511-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-005-1511-6

Keywords

Navigation