Skip to main content
Log in

Recovery of cell volume and electrolytes of A6 cells after re-establishing isotonicity following hypotonic stress

  • Epithelial Transport
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Cellular element concentrations and dry weight contents in A6 cells were determined using electron microprobe analysis to establish whether these cells exhibit a regulatory volume increase (post-RVD-RVI) when re-establishing isotonicity following a hypotonically induced regulatory volume decrease (RVD). Hypotonic stress was induced by reducing basolateral [NaCl], and hence, osmolarity fell from 260 to 140 mosmol/l. The alterations in cell volume after re-establishing isotonicity, calculated from the cellular dry weight changes, indicate within the first 2 min cell shrinkage from 120 to 76% of control, compatible with almost ideal osmometric behaviour of A6 cells, and thereafter a post-RVD-RVI to 94%. The cellular uptake of osmolytes necessary to explain the post-RVD-RVI could be accounted for solely by a gain in cellular K and Cl. The involvement of a Na-K-2Cl cotransporter in most of the KCl uptake seems plausible since basolateral bumetanide blocked KCl uptake and post-RVD-RVI. The net uptake of cations (K uptake of 185.2, Na loss of 8.2 mmol/kg dry wt) during the isotonic period exceeded the Cl uptake by 38.2 mmol/kg dry wt, suggesting the uptake of another anion and/or the alteration of cellular buffer capacity. The relatively low Na concentration maintained during the isotonic period (13.3 vs. 20.4 mmol/kg wet wt under control conditions) might favour electrolyte uptake via the Na-K-2Cl cotransporter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Banderali U, Ehrenfeld J (1996) Heterogeneity of volume-sensitive chloride channels in basolateral membranes of A6 epithelial cells in culture. J Membr Biol 154:23–33

    Article  CAS  PubMed  Google Scholar 

  2. Bauer R, Rick R (1978) Computer analysis of X-ray spectra (EDS) from thin biological specimens. X-Ray Spectrom 7:63–69

  3. Brochiero E, Banderali U, Lindenthal S, Raschi C, Ehrenfeld J (1995) Basolateral membrane chloride permeability of A6 cells: implication in cell volume regulation. Pflugers Arch 431:32–45

    CAS  PubMed  Google Scholar 

  4. Broillet MC, Horisberger JD (1991) Basolateral membrane potassium conductance of A6 cells. J Membr Biol 124:1–12

    CAS  PubMed  Google Scholar 

  5. Civan MM, Shporer M (1989) Physical state of cell Na. Curr Topics Membr Transp 34:1–19

    CAS  Google Scholar 

  6. Crowe WE, Ehrenfeld J, Brochiero E, Wills NK (1995) Apical membrane sodium and chloride entry during osmotic swelling of renal (A6) epithelial cells. J Membr Biol 144:81–91

    CAS  PubMed  Google Scholar 

  7. De Smet P, Simaels J, Declercq PE, Van Driessche W (1995) Regulatory volume decrease in cultured kidney cells (A6): role of amino acids. J Gen Physiol 106:525–542

    PubMed  Google Scholar 

  8. De Smet P, Simaels J, Van Driessche W (1995) Regulatory volume decrease in a renal distal tubular cell line (A6). I. Role of K+ and Cl. Pflugers Arch 430:936–944

    PubMed  Google Scholar 

  9. De Smet P, Li J, Van Driessche W (1998) Hypotonicity activates a lanthanide-sensitive pathway for K+ release in A6 epithelia. Am J Physiol 275:C189–C199

    PubMed  Google Scholar 

  10. Dörge A, Rick R, Gehring K, Thurau K (1978) Preparation of freeze-dried cryosections for quantitative X-ray microanalysis of electrolytes in biological soft tissues. Pflugers Arch 373:85–97

    PubMed  Google Scholar 

  11. Ehrenfeld J, Raschi C, Brochiero E (1994) Basolateral potassium membrane permeability of A6 cells and cell volume regulation. J Membr Biol 138:181–195

    CAS  PubMed  Google Scholar 

  12. Freedman JC, Hoffman JF (1979) The relation between dicarbocyanine dye fluorescence and the membrane potential of human red blood cells set at varying Donnan equilibria. J Gen Physiol 74:187–212

    CAS  PubMed  Google Scholar 

  13. Grosse T, Heid I, Simaels J, Beck FX, Nagel W, Van Driessche W, Dörge A (2001) Changes in element composition of A6 cells following hypotonic stress. Pflugers Arch 442:297–303

    Article  CAS  PubMed  Google Scholar 

  14. Hall AC, Bush PG (2001) The role of swelling-activated taurine transport pathways in the regulation of chondrocyte volume. Pflugers Arch 442:771–781

    Article  CAS  PubMed  Google Scholar 

  15. Hoffmann EK (1983) Volume regulation by animal cells. Semin Ser Soc Exp Biol 17:55–80

    Google Scholar 

  16. Hoffmann EK, Dunham PB (1995) Membrane mechanisms and intracellular signaling in cell volume regulation. Int Rev Cytol 161:173–262

    CAS  PubMed  Google Scholar 

  17. Hougaard C, Jørgensen F, Hoffmann EK (2001) Modulation of the volume-sensitive K+ current in Ehrlich ascites tumour cells by pH. Pflugers Arch 442:622–631

    Article  CAS  PubMed  Google Scholar 

  18. Lewis SA, Donaldson P (1990) Ion channels and cell volume regulation: chaos in an organized system. News Physiol Sci 5:112–119

    Google Scholar 

  19. Lytle C, McManus T (2002) Coordinate modulation of Na-K-2Cl cotransport and K-Cl cotransport by cell volume and chloride. Am J Physiol 283:C1422–C1431

    CAS  Google Scholar 

  20. Matthews JB, Smith JA, Mun EC, Sicklick JK (1998) Osmotic regulation of intestinal epithelia Na+-K+-Cl cotransport: role of Cl and F-actin. Am J Physiol 274:C697–C706

    CAS  PubMed  Google Scholar 

  21. Niisato N, Marunaka Y (1999) Activation of Na+-K+-pump by hypoosmolality through tyrosine kinase-dependent Cl conductance in Xenopus renal epithelial A6 cells. J Physiol (Lond) 518.2:417–432

    Google Scholar 

  22. Rick R, Dörge A, Thurau K (1982) Quantitative analysis of electrolytes in frozen dried sections. J Microsc 125:239–247

    CAS  PubMed  Google Scholar 

  23. Ussing HH (1982) Pathways for transport in epithelia. In: Corrandino RA (ed) Functional regulation at the cellular and molecular levels. Elsevier/North-Holland, Amsterdam, pp 285–297

  24. Van Driessche W, De Smet P, Raskin G (1993) An automatic monitoring system for epithelial cell height. Pflugers Arch 425:164–171

    PubMed  Google Scholar 

  25. Van Driessche W, De Smet P, Li J, Allen S, Zizi M, Mountian I (1997) Isovolumetric regulation in a distal nephron cell line (A6). Am J Physiol 272:C1890–C1898

    PubMed  Google Scholar 

  26. Wehner F, Olsen H, Tinel H, Kinne-Saffran E, Kinne RK (2003) Cell volume regulation: osmolytes, osmolyte transport, and signal transduction. Rev Physiol Biochem Pharmacol (in press)

    Google Scholar 

Download references

Acknowledgements

The work was supported by grants from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dörge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grosse, T., Heid, I., Öztürk, I. et al. Recovery of cell volume and electrolytes of A6 cells after re-establishing isotonicity following hypotonic stress. Pflugers Arch - Eur J Physiol 447, 29–34 (2003). https://doi.org/10.1007/s00424-003-1139-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1139-3

Keywords

Navigation