Skip to main content
Log in

Organic anion transport is the primary function of the SLC17/type I phosphate transporter family

  • The ABC of Solute Carriers
  • Guest Editor: Matthias A. Hediger
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Recently, molecular studies have determined that the SLC17/type I phosphate transporters, a family of proteins initially characterized as phosphate carriers, mediate the transport of organic anions. While their role in phosphate transport remains uncertain, it is now clear that the transport of organic anions facilitated by this family of proteins is involved in diverse processes ranging from the vesicular storage of the neurotransmitter glutamate to the degradation and metabolism of glycoproteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. Aihara Y, Mashima H, Onda H, Hisano S, Kasuya H, Hori T, Yamada S, Tomura H, Yamada Y, Inoue I, Kojima I, Takeda J (2000) Molecular cloning of a novel brain-type Na(+)-dependent inorganic phosphate cotransporter. J Neurochem 74:2622–5

    Article  CAS  PubMed  Google Scholar 

  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  3. Aula N, Salomaki P, Timonen R, Verheijen F, Mancini G, Mansson JE, Aula P, Peltonen L (2000) The spectrum of SLC17A5-gene mutations resulting in free sialic acid-storage diseases indicates some genotype-phenotype correlation. Am J Hum Genet 67:832–840

    Article  CAS  PubMed  Google Scholar 

  4. Aula N, Jalanko A, Aula P, Peltonen L (2002) Unraveling the molecular pathogenesis of free sialic acid storage disorders: altered targeting of mutant sialin. Mol Genet Metab 77:99

    Article  CAS  PubMed  Google Scholar 

  5. Aula P, Gahl WA (2001) Disorders of free sialic acid storage. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 5109–5120

  6. Bai L, Xu H, Collins JF, Ghishan FK (2001) Molecular and functional analysis of a novel neuronal vesicular glutamate transporter. J Biol Chem 276:36764–36769

    Article  CAS  PubMed  Google Scholar 

  7. Bai L, Zhang X, Ghishan FK (2003) Characterization of vesicular glutamate transporter in pancretic alpha and beta cells and its regulation by glucose. Am J Physiol 284:G808–G814

    CAS  Google Scholar 

  8. Bellocchio EE, Hu H, Pohorille A, Chan J, Pickel VM, Edwards RH (1998) The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission. J Neurosci 18:8648–8659

    CAS  PubMed  Google Scholar 

  9. Bellocchio EE, Reimer RJ, Fremeau RT, Edwards RH (2000) Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289:957–960

    Article  CAS  PubMed  Google Scholar 

  10. Biber J, Custer M, Werner A, Kaissling B, Murer H (1993) Localization of Na/Pi cotransporter, in rabbit kidney proximal tubules. II. Localization by immunohistochemistry. Pflugers Arch 424:210–215

    CAS  PubMed  Google Scholar 

  11. Bröer S, Schuster A, Wagner CA, Bröer A, Forster I, Biber J, Murer H, Werner A, Lang F, Busch AE (1998) Chloride conductance and Pi transport are separate functions induced by the expression of NaPi-1 in Xenopus oocytes. J Membr Biol 164:71–77

    CAS  PubMed  Google Scholar 

  12. Busch AE, Schuster A, Waldegger S, Wagner CA, Zempel G, Broer S, Biber J, Murer H, Lang F (1996) Expression of a renal type I sodium/phosphate transporter (NaPi-1) induces a conductance in Xenopus oocytes permeable for organic and inorganic anions. Proc Natl Acad Sci USA 93:5347–5351

    Article  CAS  PubMed  Google Scholar 

  13. Carrigan CN, Bartlett RD, Esslinger CS, Cybulski KA, Tongcharoensirikul P, Bridges RJ, Thompson CM (2002) Synthesis and in vitro pharmacology of substituted quinoline-2,4-dicarboxylic acids as inhibitors of vesicular glutamate transport. J Med Chem 45:2260–2276

    Article  CAS  PubMed  Google Scholar 

  14. Chaudhry FA, Reimer RJ, Krizaj D, Barber D, Storm-Mathisen J, Copenhagen DR, Edwards RH (1999) Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell 99:769–780

    CAS  PubMed  Google Scholar 

  15. Cheret C, Doyen A, Yaniv M, Pontoglio M (2002) Hepatocyte nuclear factor 1 alpha controls renal expression of the Npt1-Npt4 anionic transporter locus. J Mol Biol 322:929–941

    Article  CAS  PubMed  Google Scholar 

  16. Custer M, Meier F, Schlatter E, Greger R, Garcia-Perez A, Biber J, Murer H (1993) Localization of NaPi-1, a Na-Pi cotransporter, in rabbit kidney proximal tubules. I. mRNA localization by reverse transcription/polymerase chain reaction. Pflugers Arch 424:203–209

    CAS  PubMed  Google Scholar 

  17. Fremeau RT, Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ, Bellocchio EE, Fortin D, Storm-Mathisen J, Edwards RH (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31:247–60

    CAS  PubMed  Google Scholar 

  18. Fremeau RT, Burman J, Qureshi T, Tran CH, Proctor J, Johnson J, Zhang H, Sulzer D, Copenhagen DR, Storm-Mathisen J, Reimer RJ, Chaudhry FA, Edwards RH (2002) The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc Natl Acad Sci USA 99:14488–14493

    Article  CAS  PubMed  Google Scholar 

  19. Gras C, Herzog E, Bellenchi GC, Bernard V, Ravassard P, Pohl M, Gasnier B, Giros B, El Mestikawy S (2002) A third vesicular glutamate transporter expressed by cholinergic and serotoninergic neurons. J Neurosci 22:5442–5451

    CAS  PubMed  Google Scholar 

  20. Hartinger J, Jahn R (1993) An anion binding site that regulates the glutamate transporter of synaptic vesicles. J Biol Chem 268:23122–23127

    CAS  PubMed  Google Scholar 

  21. Havelaar AC, Mancini GM, Beerens CE, Souren RM, Verheijen FW (1998) Purification of the lysosomal sialic acid transporter. Functional characteristics of a monocarboxylate transporter. J Biol Chem 273:34568–34574

    Article  CAS  PubMed  Google Scholar 

  22. Hayashi M, Otsuka M, Morimoto R, Hirota S, Yatsushiro S, Takeda J, Yamamoto A, Moriyama Y (2001) Differentiation-associated Na+-dependent inorganic phosphate cotransporter (DNPI) is a vesicular glutamate transporter in endocrine glutamatergic systems. J Biol Chem 276:43400-43406

    Article  CAS  PubMed  Google Scholar 

  23. Hayashi M, Yamada H, Uehara S, Morimoto R, Muroyama A, Yatsushiro S, Takeda J, Yamamoto A, Moriyama Y (2003) Secretory granule-mediated co-secretion ofl-glutamate and glucagon triggers glutamatergic signal transmission in islets of langerhans. J Biol Chem (in press)

  24. Herzog E, Bellenchi GC, Gras C, Bernard V, Ravassard P, Bedet C, Gasnier B, Giros B, El Mestikawy S (2001) The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J Neurosci 21:RC181

    CAS  PubMed  Google Scholar 

  25. Kaneko T, Fujiyama F (2002) Complementary distribution of vesicular glutamate transporters in the central nervous system. Neurosci Res 42:243–50

    Article  CAS  PubMed  Google Scholar 

  26. Lee RY, Sawin ER, Chalfie M, Horvitz HR, Avery L (1999) EAT-4, a homolog of a mammalian sodium-dependent inorganic phosphate cotransporter, is necessary for glutamatergic neurotransmission in Caenorhabditis elegans. J Neurosci 19:159–67

    CAS  PubMed  Google Scholar 

  27. Mancini GM, Jonge HR de, Galjaard H, Verheijen FW (1989) Characterization of a proton-driven carrier for sialic acid in the lysosomal membrane. Evidence for a group-specific transport system for acidic monosaccharides. J Biol Chem 264:15247–15254

    CAS  PubMed  Google Scholar 

  28. Mancini GM, Beerens CE, Galjaard H, Verheijen FW (1992) Functional reconstitution of the lysosomal sialic acid carrier into proteoliposomes. Proc Natl Acad Sci USA 89:6609–6613

    CAS  PubMed  Google Scholar 

  29. Miyamoto K, Tatsumi S, Sonoda T, Yamamoto H, Minami H, Taketani Y, Takeda E (1995) Cloning and functional expression of a Na(+)-dependent phosphate co-transporter from human kidney: cDNA cloning and functional expression. Biochem J 305:81–85

    CAS  PubMed  Google Scholar 

  30. Murer H, Hernando N, Forster I, Biber J (2000) Proximal tubular phosphate reabsorption: molecular mechanisms. Physiol Rev 80:1373–1409

    CAS  PubMed  Google Scholar 

  31. Ni B, Rosteck PR, Nadi NS, Paul SM (1994) Cloning and expression of a cDNA encoding a brain-specific Na+-dependent inorganic phosphate cotransporter. Proc Natl Acad Sci USA 91:5607–5611

    CAS  PubMed  Google Scholar 

  32. Ogita K, Hirata K, Bole DG, Yoshida S, Tamura Y, Leckenby AM, Ueda T (2001) Inhibition of vesicular glutamate storage and exocytotic release by Rose Bengal. J Neurochem 77:34–42

    Article  CAS  PubMed  Google Scholar 

  33. Ozkan ED, Lee FS, Ueda T (1997) A protein factor that inhibits ATP-dependent glutamate and γ-aminobutyric acid accumulation into synaptic vesicles: purification and initial characterization. Proc Natl Acad Sci USA 94:4137–4142

    Article  CAS  PubMed  Google Scholar 

  34. Reimer RJ, Chaudhry FA, Gray AT, Edwards RH (2000) Amino acid transport System A resembles System N in sequence but differs in mechanism. Proc Natl Acad Sci USA 97:7715–7720

    CAS  PubMed  Google Scholar 

  35. Roseth S, Fykse EM, Fonnum F (1995) Uptake of l-glutamate into rat brain synaptic vesicles: effect of inhibitors that bind specifically to the glutamate transporter. J Neurochem 65:96–103

    CAS  PubMed  Google Scholar 

  36. Ruddy DA, Kronmal GS, Lee VK, Mintier GA, Quintana L, Domingo R Jr, Meyer NC, Irrinki A, McClelland EE, Fullan A, Mapa FA, Moore T, Thomas W, Loeb DB, Harmon C, Tsuchihashi Z, Wolff RK, Schatzman RC, Feder JN (1997) A 1.1-Mb transcript map of the hereditary hemochromatosis locus. Genome Res 7:441–456

    CAS  PubMed  Google Scholar 

  37. Schafer MK, Varoqui H, Defamie N, Weihe E, Erickson JD (2002) Molecular cloning and functional identification of mouse vesicular glutamate transporter 3 and its expression in subsets of novel excitatory neurons. J Biol Chem 277:50734–50748

    Article  PubMed  Google Scholar 

  38. Shibui A, Tsunoda T, Seki N, Suzuki Y, Sugane K, Sugano S (1999) Isolation and chromosomal mapping of a novel human gene showing homology to Na+/PO4 cotransporter. J Hum Genet 44:190–192

    Article  CAS  PubMed  Google Scholar 

  39. Skerry TM, Genever PG (2001) Glutamate signalling in non-neuronal tissues. Trends Pharmacol Sci 22:174–181

    Article  CAS  PubMed  Google Scholar 

  40. Takamori S, Rhee JS, Rosenmund C, Jahn R (2000) Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407:189–194

    Article  CAS  PubMed  Google Scholar 

  41. Takamori S, Rhee JS, Rosenmund C, Jahn R (2001) Identification of differentiation-associated brain-specific phosphate transporter as a second vesicular glutamate transporter (VGLUT2). J Neurosci 21:RC182

    CAS  PubMed  Google Scholar 

  42. Takamori S, Malherbe P, Broger C, Jahn R (2002) Molecular cloning and functional characterization of human vesicular glutamate transporter 3. EMBO Rep 3:798–803

    Article  CAS  PubMed  Google Scholar 

  43. Uchino H, Tamai I, Yamashita K, Minemoto Y, Sai Y, Yabuuchi H, Miyamoto K, Takeda E, Tsuji A (2000) p-Aminohippuric acid transport at renal apical membrane mediated by human inorganic phosphate transporter NPT1. Biochem Biophys Res Commun 270:254–259

    CAS  PubMed  Google Scholar 

  44. Varoqui H, Schafer MK, Zhu H, Weihe E, Erickson JD (2002) Identification of the differentiation-associated Na+/Pi transporter as a novel vesicular glutamate transporter expressed in a distinct set of glutamatergic synapses. J Neurosci 22:142–55

    CAS  PubMed  Google Scholar 

  45. Verheijen FW, Verbeek E, Aula N, Beerens CE, Havelaar AC, Joosse M, Peltonen L, Aula P, Galjaard H, Spek PJ van der, Mancini GM (1999) A new gene, encoding an anion transporter, is mutated in sialic acid storage diseases. Nat Genet 23:462–465

    Article  CAS  PubMed  Google Scholar 

  46. Welbourne TC, Matthews JC (1999) Glutamate transport and renal function. Am J Physiol 277:F501–505

    CAS  PubMed  Google Scholar 

  47. Werner A, Moore ML, Mantei N, Biber J, Semenza G, Murer H (1991) Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. Proc Natl Acad Sci USA 88:9608–9612

    CAS  PubMed  Google Scholar 

  48. Winter HC, Ueda T (1993) Glutamate uptake system in the presynaptic vesicle: glutamic acid analogs as inhibitors and alternate substrates. Neurochem Res 18:79–85

    CAS  PubMed  Google Scholar 

  49. Wolosker H, Souza DO de, Meis L de (1996) Regulation of glutamate transport into synaptic vesicles by chloride and proton gradient. J Biol Chem 271:11726–11731

    Article  CAS  PubMed  Google Scholar 

  50. Yabuuchi H, Tamai I, Morita K, Kouda T, Miyamoto K, Takeda E, Tsuji A (1998) Hepatic sinusoidal membrane transport of anionic drugs mediated by anion transporter Npt1. J Pharmacol Exp Ther 286:1391–1396

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are supported in part by funding from the NINDS (R.H.E. and R.J.R.), NIDA (R.H.E.) and NIMH (R.H.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Reimer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reimer, R.J., Edwards, R.H. Organic anion transport is the primary function of the SLC17/type I phosphate transporter family. Pflugers Arch - Eur J Physiol 447, 629–635 (2004). https://doi.org/10.1007/s00424-003-1087-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1087-y

Keywords

Navigation