Skip to main content

Advertisement

Log in

Reduced oxidative power but unchanged antioxidative capacity in skeletal muscle from aged humans

  • Skeletal Muscle
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The hypothesis that the aging process is associated with mitochondrial dysfunction and oxidative stress has been investigated in human skeletal muscle. Muscle biopsy samples were taken from seven old male subjects [OS; 75 (range 61–86) years] and eight young male subjects [YS; 25 (22–31) years]. Oxidative function was measured both in permeabilised muscle fibres and isolated mitochondria. Despite matching the degree of physical activity, OS had a lower training status than YS as judged from pulmonary maximal O2 consumption (V̇O2max, −36%) and handgrip strength (−20%). Both maximal respiration and creatine-stimulated respiration were reduced in muscle fibres from OS (−32 and −34%, respectively). In contrast, respiration in isolated mitochondria was similar in OS and YS. The discrepancy might be explained by a biased harvest of "healthy" mitochondria and/or disruption of structural components during the process of isolation. Cytochrome C oxidase was reduced (−40%, P<0.01), whereas UCP3 protein tended to be elevated in OS (P=0.09). Generation of reactive oxygen species by isolated mitochondria and measures of antioxidative defence (muscle content of glutathione, glutathione redox status, antioxidative enzymes activity) were not significantly different between OS and YS. It is concluded that aging is associated with mitochondrial dysfunction, which appears to be unrelated to reduced physical activity. The hypothesis of increased oxidative stress in aged muscle could not be confirmed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4A, B.
Fig. 5.

Similar content being viewed by others

References

  1. Åstrand I (1960) Work capacity in men and women with special reference to age. Acta Physiol Scand Suppl 49:169

    Google Scholar 

  2. Barrientos A, Casademont J, Rotig A, Miro O, Urbano-Marquez A, Rustin P, Cardellach F (1996) Absence of relationship between the level of electron transport chain activities and aging in human skeletal muscle. Biochem Biophys Res Commun 229:536–539

    Article  CAS  PubMed  Google Scholar 

  3. Bejma J, Ramires P, Ji LL (2000) Free radical generation and oxidative stress with ageing and exercise: differential effects in the myocardium and liver. Acta Physiol Scand 169:343–351

    Article  CAS  PubMed  Google Scholar 

  4. Reference deleted

  5. Reference deleted

  6. Brierley EJ, Johnson MA, James OF, Turnbull DM (1996) Effects of physical activity and age on mitochondrial function. Q J Med 89:251–258

    CAS  Google Scholar 

  7. Brierley EJ, Johnson MA, James OF, Turnbull DM (1997) Mitochondrial involvement in the ageing process. Facts and controversies. Mol Cell Biochem 174:325–328

    Article  CAS  PubMed  Google Scholar 

  8. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation: III. The steady state. J Biol Chem 217:409–427

    CAS  Google Scholar 

  9. Conley KE, Jubrias SA, Esselman PC (2000) Oxidative capacity and ageing in human muscle. J Physiol (Lond) 526:203–210

    Google Scholar 

  10. Cooper JM, Mann VM, Schapira AH (1992). Analyses of mitochondrial respiratory chain function and mitochondrial DNA deletion in human skeletal muscle: effect of ageing. J Neurol Sci 113:91–98

    CAS  PubMed  Google Scholar 

  11. Cortopassi GA, Wong A (1999) Mitochondria in organismal aging and degeneration. Biochim Biophys Acta 1410:183–193

    CAS  Google Scholar 

  12. Cotgreave IA, Goldschmidt L, Tonkonogi M, Svensson M (2002) Differentiation-specific alterations to glutathione synthesis in and hormonally stimulated release from human skeletal muscle cells. FASEB J 16:435–437

    Google Scholar 

  13. Davydov VV, Shvets VN (1999) Differential changes in the properties of mitochondrial isoenzyme creatine kinase from heart of adult and old rats during stress. Exp Gerontol 34:375–378

    Article  CAS  PubMed  Google Scholar 

  14. Fano G, Mecocci P, Vecchiet J, Belia S, Fulle S, Polidori MC, Felzani G, Senin U, Vecchiet L, Beal MF (2001) Age and sex influence on oxidative damage and functional status in human skeletal muscle. J Muscle Res Cell Motil 22:345–351

    Article  CAS  PubMed  Google Scholar 

  15. Fleming JE, Miquel J, Cottrell SF, Yengoyan LS, Economos AC (1982) Is cell aging caused by respiration-dependent injury to the mitochondrial genome? Gerontology 28:44–53

    CAS  PubMed  Google Scholar 

  16. Flohe L, Gunzler WA (1984) Assays of glutathione peroxidase. Methods Enzymol 105:114–121

    PubMed  Google Scholar 

  17. Flohe L, Otting F (1984) Superoxide dismutase assays. Methods Enzymol 105:93–104

    PubMed  Google Scholar 

  18. Gohil K, Jones DA, Edwards RHT (1981) Analysis of muscle mitochondrial function with techniques applicable to needle biopsy samples. Clin Physiol 1:195–207

    CAS  Google Scholar 

  19. Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147

    CAS  PubMed  Google Scholar 

  20. Hoppel CL, Moghaddas S, Lesnefsky EJ (2002) Interfibrillar cardiac mitochondrial complex III defects in the aging rat heart. Biogerontology 3:41–44

    Article  CAS  PubMed  Google Scholar 

  21. Kent-Braun JA, Ng AV (2000) Skeletal muscle oxidative capacity in young and older women and men. J Appl Physiol 89:1072–1078

    CAS  PubMed  Google Scholar 

  22. Kerner J, Turkaly PJ, Minkler PE, Hoppel CL (2001) Aging skeletal muscle mitochondria in the rat: decreased uncoupling protein-3 content. Am J Physiol 281:E1054–E1062

    CAS  Google Scholar 

  23. Laganiere S, Yu BP (1993) Modulation of membrane phospholipid fatty acid composition by age and food restriction. Gerontology 39:7–18

    CAS  PubMed  Google Scholar 

  24. Lee CM, Lopez ME, Weindruch R, Aiken JM (1998) Association of age-related mitochondrial abnormalities with skeletal muscle fiber atrophy. Free Radic Biol Med 25:964–972

    Article  CAS  PubMed  Google Scholar 

  25. Lenaz G (1998) Role of mitochondria in oxidative stress and ageing. Biochim Biophys Acta 1366:53–67

    Article  CAS  PubMed  Google Scholar 

  26. Lenaz G, D'Aurelio M, Merlo Pich M, Genova ML, Ventura B, Bovina C, Formiggini G, Parenti Castelli G (2000) Mitochondrial bioenergetics in aging. Biochim Biophys Acta 1459:397–404

    Article  CAS  PubMed  Google Scholar 

  27. Luo JL, Hammarqvist F, Andersson K, Wernerman J (1998) Surgical trauma decreases glutathione synthetic capacity in human skeletal muscle tissue. Am J Physiol 275:E359–E365

    CAS  PubMed  Google Scholar 

  28. McCully KK, Forciea MA, Hack LM, Donlon E, Wheatley RW, Oatis CA, Goldberg T, Chance B (1991) Muscle metabolism in older subjects using 31P magnetic resonance spectroscopy. Can J Physiol Pharmacol 69:576–580

    CAS  PubMed  Google Scholar 

  29. Moller P, Bergstrom J, Furst P, Hellstrom K (1980) Effect of aging on energy-rich phosphagens in human skeletal muscles. Clin Sci (Lond) 58:553–555

    Google Scholar 

  30. Muller-Hocker J (1990) Cytochrome c oxidase deficient fibres in the limb muscle and diaphragm of man without muscular disease: an age-related alteration J Neurol Sci 100:14–21

    CAS  Google Scholar 

  31. Muller-Hocker J, Schneiderbanger K, Stefani FH, Kadenbach B (1992) Progressive loss of cytochrome c oxidase in the human extraocular muscles in ageing – -a cytochemical-immunohistochemical study. Mutat Res 275:115–124

    Article  CAS  PubMed  Google Scholar 

  32. Pansarasa O, Bertorelli L, Vecchiet J, Felzani G, Marzatico F (1999) Age-dependent changes of antioxidant activities and markers of free radical damage in human skeletal muscle Free Radic Biol Med 27:617–622

    Article  CAS  Google Scholar 

  33. Paradies G, Ruggiero FM (1990) Age-related changes in the activity of the pyruvate carrier and in the lipid composition in rat-heart mitochondria. Biochim Biophys Acta 1016:207–212

    Article  CAS  PubMed  Google Scholar 

  34. Paradies G, Ruggiero FM (1991) Effect of aging on the activity of the phosphate carrier and on the lipid composition in rat liver mitochondria. Arch Biochem Biophys 284:332–337

    CAS  PubMed  Google Scholar 

  35. Rantanen T, Era P, Heikkinen E (1994) Maximal isometric strength and mobility among 75-year-old men and women. Age Ageing 23:132–137

    CAS  PubMed  Google Scholar 

  36. Rooyackers OE, Adey DB, Ades PA, Nair KS (1996) Effect of age on in vivo rates of mitochondrial protein synthesis in human skeletal muscle. Proc Natl Acad Sci USA 93:15364–15369

    Article  CAS  PubMed  Google Scholar 

  37. Ruggiero FM, Cafagna F, Petruzzella V, Gadaleta MN, Quagliariello E (1992) Lipid composition in synaptic and nonsynaptic mitochondria from rat brains and effect of aging. J Neurochem 59:487–491

    CAS  PubMed  Google Scholar 

  38. Saks VA, Kongas O, Vendelin M, Kay L (2000) Role of the creatine/phosphocreatine system in the regulation of mitochondrial respiration. Acta Physiol Scand 168:635–642

    Article  CAS  PubMed  Google Scholar 

  39. Shepherd D, Garland PB (1969) The kinetic properties of citrate synthase from rat liver mitochondria. Biochem J 114:597–610

    CAS  PubMed  Google Scholar 

  40. Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 91:10771–10778

    Google Scholar 

  41. Short KR, Nair KS (2001) Does aging adversely affect muscle mitochondrial function? Exerc Sport Sci Rev 29:118–123

    CAS  PubMed  Google Scholar 

  42. Skelton DA, Greig CA, Davies JM, Young A (1994) Strength, power and related functional ability of healthy people aged 65–89 years. Age Ageing 23:371–377

    CAS  PubMed  Google Scholar 

  43. Skulachev VP (1996) Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Q Rev Biophys 29:169–202

    CAS  PubMed  Google Scholar 

  44. Smith SA, Montain SJ, Matott RP, Zientara GP, Jolesz FA, Fielding RA (1998) Creatine supplementation and age influence muscle metabolism during exercise. J Appl Physiol 85:1349–1356

    CAS  PubMed  Google Scholar 

  45. Tonkonogi M, Harris B, Sahlin K (1998) Mitochondrial oxidative function in human saponin-skinned muscle fibres: effects of prolonged exercise. J Physiol (Lond) 510:279–286

    Google Scholar 

  46. Tonkonogi M, Sahlin K (1997) Rate of oxidative phosphorylation in isolated mitochondria from human skeletal muscle: effect of training status. Acta Physiol Scand 161:345–353

    CAS  PubMed  Google Scholar 

  47. Tonkonogi M, Sahlin K (2002) Physical exercise and mitochondrial function in human skeletal muscle. Exerc Sport Sci Rev 30:129–137

    PubMed  Google Scholar 

  48. Tonkonogi M, Walsh B, Svensson M, Sahlin K (2000). Mitochondrial function and antioxidative defence in human muscle: effects of endurance training and oxidative stress. J Physiol (Lond) 528:379–388

    Google Scholar 

  49. Trounce I, Byrne E, Marzuki S (1989) Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing. Lancet 1:637–639

    CAS  PubMed  Google Scholar 

  50. Vidal-Puig AJ, Grujic D, Zhang CY, Hagen T, Boss O, Ido Y, Szczepanik A, Wade J, Mootha, V, Cortright R, Muoio DM, Lowell BB (2000) Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem 275:16258–16266

    CAS  PubMed  Google Scholar 

  51. Reference deleted

  52. Walsh B, Tonkonogi M, Söderlund K, Hultman E, Saks V, Sahlin K (2001) The role of phosphorylcreatine and creatine in the regulation of mitochondrial respiration in human skeletal muscle. J Physiol (Lond) 537:971–978

    Google Scholar 

  53. Reference deleted

  54. Wickham C, Cooper C, Margetts BM, Barker DJ (1989) Muscle strength, activity, housing and the risk of falls in elderly people. Age Ageing 18:47–51

    CAS  PubMed  Google Scholar 

  55. Wilson PD, Franks LM (1975) The effect of age on mitochondrial ultrastructure and enzymes. Adv Exp Med Biol 53:171–183

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the skilled technical assistance of Christina Hebert and the excellent nursing assistance of Vivika Gustavsson. The present study was supported by grants from the Swedish Society for Medical Research (M.T.), the Swedish National Board of Health and Welfare (M.T.), the Swedish Research Council (K.S. project 13020; J.W. project 04210;, O.R. project 14244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michail Tonkonogi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tonkonogi, M., Fernström, M., Walsh, B. et al. Reduced oxidative power but unchanged antioxidative capacity in skeletal muscle from aged humans. Pflugers Arch - Eur J Physiol 446, 261–269 (2003). https://doi.org/10.1007/s00424-003-1044-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-003-1044-9

Keywords

Navigation