Skip to main content
Log in

Pharmacological investigation of the role of ion channels in salivary secretion

  • Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

The role of K+ and Cl channels in salivary secretion was investigated, with emphasis on the potential role of Ca2+-activated K+ channels. Ligand saturation kinetic assays and autoradiography showed large-conductance (BK) K+ channels to be highly expressed in rat submandibular and parotid glands, whereas low-conductance (SK) K+ channels could not be detected. To investigate the role of K+ and Cl channels in secretion, intact rabbit submandibular glands were vascularly perfused and secretion induced by 10 µM ACh. Secretion was inhibited by 34±3% following perfusion with the general K+ channel inhibitor Ba2+ (5 mM), whereas organic inhibitors of BK (200 nM paxilline) or intermediate-conductance (IK) K+ channels (5 µM clotrimazole) had no effect. Secretion was strongly influenced by Cl channel inhibitors, as 100 µM 5-nitro-2-(3-phenylpropylamino)benzoate (NPPB) completely abolished, while 10 µM NPPB, 20 µM NS1652 and 20 µM NS3623 reduced secretion by 34±3%, 23±3% and 59±4%, respectively. In conclusion, although high expression levels of BK channels were demonstrated, pharmacological tools failed to demonstrate any role for BK, IK or SK channels in salivary secretion in the rabbit submandibular gland. Other types of K+ channel, however, and particularly Cl channels, are essential for ACh-induced salivary secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–F.
Fig. 2A–F.
Fig. 3A–F.
Fig. 4A–F.
Fig. 5A, B.
Fig. 6A–C.
Fig. 7A–D.

Similar content being viewed by others

References

  1. Ahring PK, Strøbaek D, Christophersen P, Olesen SP, Johansen TE (1997) Stable expression of the human large-conductance Ca2+-activated K+ channel α- and β-subunits in HEK293 cells. FEBS Lett 415:67–70

    CAS  PubMed  Google Scholar 

  2. Bennekou P, Pedersen O, Møller A, Christophersen P (2000) Volume control in sickle cells is facilitated by the novel anion conductance inhibitor NS1652. Blood 95:1842–1848

    CAS  PubMed  Google Scholar 

  3. Bennekou P, de Franceschi L, Pedersen O, Lian L, Asakura T, Evans G, Brugnara C, Christophersen P (2001) Treatment with NS3623, a novel Cl− conductance blocker, ameliorates erythrocyte dehydration in transgenic SAD mice: a possible new therapeutic approach for sickle cell disease. Blood 97:1451–1457

    Article  CAS  PubMed  Google Scholar 

  4. Coetzee WA, Amarillo Y, Chiu J, Chow A, Lau D, McCormack T, Moreno H, Nadal MS, Ozaita A, Pountney D, Saganich M, Vega-Saenz dM, Rudy B (1991) Molecular diversity of K+ channels. Ann NY Acad Sci 868:233–285

    Google Scholar 

  5. Cook DI, Young JA (1989) Effect of K+ channels in the apical plasma membrane on epithelial secretion based on secondary active Cl− transport. J Membr Biol 110:139–146

    CAS  PubMed  Google Scholar 

  6. Dich-Nielsen JO, Laugesen LP, Poulsen JH (1985) Submandibular salivary secretion in the cat and associated potassium movements: dependence on temperature and perfusate flow rate. Pflugers Arch 403:440–445

    CAS  PubMed  Google Scholar 

  7. Dupuis DS, Schrøder RL, Jespersen T, Christensen JK, Christophersen P, Jensen BS, Olesen SP (2002) Activation of KCNQ5 channels stably expressed in HEK293 cells by BMS-204352. Eur J Pharmacol 437:129–137

    Article  CAS  PubMed  Google Scholar 

  8. Grunnet M, Knaus HG, Solander C, Klaerke DA (1999) Quantification and distribution of Ca2+-activated maxi K+ channels in rabbit distal colon. Am J Physiol 277:G22–G30

    CAS  PubMed  Google Scholar 

  9. Grunnet M, Jensen BS, Olesen SP, Klaerke DA (2001) Apamin interacts with all subtypes of cloned small-conductance Ca2+-activated K+ channels. Pflugers Arch 441:544–550

    CAS  PubMed  Google Scholar 

  10. Grunnet M, Jespersen T, Angelo K, Frøkjaer-Jensen C, Klaerke DA, Olesen S, Jensen BS (2001) Pharmacological modulation of SK3 channels. Neuropharmacology 40:879–887

    Google Scholar 

  11. Deleted

  12. Hayashi T, Hirono C, Young JA, Cook DI (1995) The ACh-induced whole-cell currents in sheep parotid secretory cells. Do BK channels really carry the ACh-evoked whole-cell K+ current? J Membr Biol 144:157–166

    CAS  PubMed  Google Scholar 

  13. Hayashi T, Poronnik P, Young JA, Cook DI (1996) The ACh-evoked, Ca2+-activated whole-cell K+ current in mouse mandibular secretory cells. Whole-cell and fluorescence studies. J Membr Biol 152:253–259

    Article  CAS  PubMed  Google Scholar 

  14. Hayashi T, Young JA, Cook DI (1996) The ACh-evoked Ca2+-activated K+ current in mouse mandibular secretory cells. Single channel studies. J Membr Biol 151:19–27

    Article  CAS  PubMed  Google Scholar 

  15. Ishikawa T (1996) A bicarbonate- and weak acid-permeable chloride conductance controlled by cytosolic Ca2+ and ATP in rat submandibular acinar cells. J Membr Biol 153:147–159

    Article  CAS  PubMed  Google Scholar 

  16. Ishikawa T, Cook DI (1993) A Ca2+-activated Cl− current in sheep parotid secretory cells. J Membr Biol 135:261–271

    CAS  PubMed  Google Scholar 

  17. Ishikawa T, Murakami M (1995) Tetraethylammonium-insensitive, Ca2+-activated whole-cell K+ currents in rat submandibular acinar cells. Pflugers Arch 429:748–750

    CAS  PubMed  Google Scholar 

  18. Ishikawa T, Murakami M, Seo Y (1994) Basolateral K+ efflux is largely independent of maxi-K+ channels in rat submandibular glands during secretion. Pflugers Arch 428:516–525

    CAS  PubMed  Google Scholar 

  19. Jensen BS, Strøbaek D, Christophersen P, Jørgensen TD, Hansen C, Silahtaroglu A, Olesen SP, Ahring PK (1998) Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel. Am J Physiol 275:C848–C856

    CAS  PubMed  Google Scholar 

  20. Jiang Y, MacKinnon R (2000) The barium site in a potassium channel by x-ray crystallography. J Gen Physiol 115:269–272

    CAS  PubMed  Google Scholar 

  21. Kirkup AJ, Edwards G, Weston AH (1996) Investigation of the effects of 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB) on membrane currents in rat portal vein. Br J Pharmacol 117:175–183

    CAS  PubMed  Google Scholar 

  22. Knaus HG, Schwarzer C, Koch RO, Eberhart A, Kaczorowski GJ, Glossmann H, Wunder F, Pongs O, Garcia ML, Sperk G (1996) Distribution of high-conductance Ca2+-activated K+ channels in rat brain: targeting to axons and nerve terminals. J Neurosci 16:955–963

    PubMed  Google Scholar 

  23. Lau KR, Howorth AJ, Case RM (1990) The effects of bumetanide, amiloride and Ba2+ on fluid and electrolyte secretion in rabbit salivary gland. J Physiol (Lond) 425:407–427

    Google Scholar 

  24. Majid A, Brown P, Best L, Park K (2001) Expression of volume-sensitive Cl− channels and ClC-3 in acinar cells isolated from the rat lacrimal gland and submandibular salivary gland. J Physiol (Lond) 534:409–421

    Google Scholar 

  25. Martinez JR, Cassity N (1985) Effects of 4,4′-diisothiocyano-2,2′-stilbene disulphonic acid and amiloride on salivary secretion by isolated, perfused rat submandibular glands. Arch Oral Biol 30:797–803

    CAS  PubMed  Google Scholar 

  26. Maruyama Y, Gallacher DV, Petersen OH (1983) Voltage and Ca2+-activated K+ channel in baso-lateral acinar cell membranes of mammalian salivary glands. Nature 302:827–829

    CAS  PubMed  Google Scholar 

  27. Melvin JE (1999) Chloride channels and salivary gland function. Crit Rev Oral Biol Med 10:199–209

    CAS  PubMed  Google Scholar 

  28. Molinari EJ, Sullivan JP, Wan Y, Brioni JD, Gopalakrishnan M (2000) Characterization and modulation of [125I]iberiotoxin-D19Y/Y36F binding in the guinea-pig urinary bladder. Eur J Pharmacol 388:155–161

    Article  CAS  PubMed  Google Scholar 

  29. Mourre C, Hugues M, Lazdunski M (1986) Quantitative autoradiographic mapping in rat brain of the receptor of apamin, a polypeptide toxin specific for one class of Ca2+-dependent K+ channels. Brain Res 382:239–249

    CAS  PubMed  Google Scholar 

  30. Nauntofte B (1992) Regulation of electrolyte and fluid secretion in salivary acinar cells. Am J Physiol 263:G823–G837

    CAS  PubMed  Google Scholar 

  31. Nauntofte B, Dissing S (1988) K+ transport and membrane potentials in isolated rat parotid acini. Am J Physiol 255:C508–C518

    CAS  PubMed  Google Scholar 

  32. Park K, Case RM, Brown PD (2001) Identification and regulation of K+ and Cl− channels in human parotid acinar cells. Arch Oral Biol 46:801–810

    Article  CAS  PubMed  Google Scholar 

  33. Petersen OH (1986) Calcium-activated potassium channels and fluid secretion by exocrine glands. Am J Physiol 251:G1–G13

    CAS  PubMed  Google Scholar 

  34. Petersen OH (1992) Stimulus-secretion coupling: cytoplasmic calcium signals and the control of ion channels in exocrine acinar cells. J Physiol (Lond) 448:1–51

    Google Scholar 

  35. Poulsen JH (1998) Secretion of electrolytes and water by salivary glands. In: Garrett JR, Ekström J, Anderson LC (eds) Glandular mechanisms of salivary secretion. Karger, Basel, pp 55–72

  36. Rennie KJ, Weng T, Correia MJ (2001) Effects of KCNQ channel blockers on K+ currents in vestibular hair cells. Am J Physiol 280:C473–C480

    CAS  Google Scholar 

  37. Soltoff SP, McMillian MK, Cantley LC, Cragoe EJ Jr, Talamo BR (1989) Effects of muscarinic, alpha-adrenergic, and substance P agonists and ionomycin on ion transport mechanisms in the rat parotid acinar cell. The dependence of ion transport on intracellular calcium. J Gen Physiol 93:285–319

    CAS  PubMed  Google Scholar 

  38. Sørensen JB, Nielsen MS, Gudme CN, Larsen EH, Nielsen R (2001) Maxi K+ channels co-localised with CFTR in the apical membrane of an exocrine gland acinus: possible involvement in secretion. Pflugers Arch 442:1–11

    PubMed  Google Scholar 

  39. Strøbaek D, Christophersen P, Holm NR, Moldt P, Ahring PK, Johansen TE, Olesen SP (1996) Modulation of the Ca2+-dependent K+ channel, hslo, by the substituted diphenylurea NS 1608, paxilline and internal Ca2+. Neuropharmacology 35:903–914

    Google Scholar 

  40. Takumi T, Ohkubo H, Nakanishi S (1988) Cloning of a membrane protein that induces a slow voltage-gated potassium current. Science 242:1042–1045

    CAS  PubMed  Google Scholar 

  41. Wang HS, Brown BS, McKinnon D, Cohen IS (2000) Molecular basis for differential sensitivity of KCNQ and I(Ks) channels to the cognitive enhancer XE991. Mol Pharmacol 57:1218–1223

    CAS  PubMed  Google Scholar 

  42. Warth R, Garcia AM, Kim JK, Zdebik A, Nitschke R, Bleich M, Gerlach U, Barhanin J, Kim SJ (2002) The role of KCNQ1/KCNE1 K+ channels in intestine and pancreas: lessons from the KCNE1 knockout mouse. Pflugers Arch 443:822–828

    Article  CAS  PubMed  Google Scholar 

  43. Wegman EA, Ishikawa T, Young JA, Cook DI (1992) Cation channels in basolateral membranes of sheep parotid secretory cells. Am J Physiol 263:G786–G794

    CAS  PubMed  Google Scholar 

  44. Young JA, Cook DI, Evans LA, Pirani D (1987) Effects of ion transport inhibition on rat mandibular gland secretion. J Dent Res 66:531–536

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Bo. S. Jensen and Dr. Tino Jørgensen (NeuroSearch A/S, Denmark) are thanked for helpful discussions. Dr. Hans-Günther Knaus (University of Innsbruck, Austria) is thanked for donating the 125I-IbTX-D19Y/Y36F. Dr. Philip K. Ahring (NeuroSearch A/S, Denmark) is thanked for providing the stable HEK293 cell line expressing BK channels. Grazyna M. Poulsen is thanked for excellent technical assistance. NeuroSearch A/S, Denmark, is thanked for donating NS1652 and NS3623. The Novo Nordisk Foundation, The Carlsberg Foundation, The John and Birthe Meyer Foundation, The Danish Heart Foundation and The Danish Natural and Medical Sciences Research Councils provided funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanna K. Jorgensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stummann, T.C., Poulsen, J.H., Hay-Schmidt, A. et al. Pharmacological investigation of the role of ion channels in salivary secretion. Pflugers Arch - Eur J Physiol 446, 78–87 (2003). https://doi.org/10.1007/s00424-002-0985-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-002-0985-8

Keywords

Navigation