Skip to main content

Advertisement

Log in

Chemoprevention of pancreatic cancer—one step closer

  • Review Article
  • Published:
Langenbeck's Archives of Surgery Aims and scope Submit manuscript

Abstract

Background

Since for pancreatic cancer the mortality rate approaches the incidence rate with only 1–4% of all patients surviving 5 years, it would be would be of great value to provide chemopreventive treatment for high-risk individuals.

Discussion

The preclinical study of pancreatic intraepithelial neoplasia (PanINs) has recently been made possible by the generation of genetically modified animal models, which recapitulate human PanINs and invasive pancreatic cancer on a genetic and histomorphologic level. Very recently, several groups have reported first evidence of chemoprevention of pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249

    Article  PubMed  Google Scholar 

  2. ACS (2009) Cancer facts & figures 2009. American Cancer Society, Atlanta

    Google Scholar 

  3. Feldmann G, Maitra A (2008) Molecular genetics of pancreatic ductal adenocarcinomas and recent implications for translational efforts. J Mol Diagn 10(2):111–122

    Article  PubMed  Google Scholar 

  4. Maitra A, Kern SE, Hruban RH (2006) Molecular pathogenesis of pancreatic cancer. Best Pract Res Clin Gastroenterol 20(2):211–226

    Article  PubMed  CAS  Google Scholar 

  5. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10(8):789–799

    Article  PubMed  CAS  Google Scholar 

  6. Feldmann G, Rauenzahn S, Maitra A (2009) In vitro models of pancreatic cancer for translational oncology research. Expert Opin Drug Discov 4(4):429–443

    Article  PubMed  CAS  Google Scholar 

  7. Feldmann G, Maitra A (2010) Molecular pathology of precursor lesions of pancreatic cancer. Pancreatic cancer. Springer, New York, pp 119–141

    Google Scholar 

  8. Moskaluk CA, Hruban RH, Kern SE (1997) p16 and K-ras gene mutations in the intraductal precursors of human pancreatic adenocarcinoma. Cancer Res 57(11):2140–2143

    PubMed  CAS  Google Scholar 

  9. Ruggeri BA, Huang L, Wood M (1998) Amplification and overexpression of the AKT2 oncogene in a subset of human pancreatic ductal adenocarcinomas. Mol Carcinog 21(2):81–86

    Article  PubMed  CAS  Google Scholar 

  10. Asano T, Yao Y, Zhu J (2004) The PI 3-kinase/Akt signaling pathway is activated due to aberrant Pten expression and targets transcription factors NF-kappaB and c-Myc in pancreatic cancer cells. Oncogene 23(53):8571–8580

    Article  PubMed  CAS  Google Scholar 

  11. Schutte M, Hruban RH, Geradts J et al (1997) Abrogation of the Rb/p16 tumor-suppressive pathway in virtually all pancreatic carcinomas. Cancer Res 57(15):3126–3130

    PubMed  CAS  Google Scholar 

  12. Wilentz RE, Geradts J, Maynard R et al (1998) Inactivation of the p16 (INK4A) tumor-suppressor gene in pancreatic duct lesions: loss of intranuclear expression. Cancer Res 58(20):4740–4744

    PubMed  CAS  Google Scholar 

  13. Bardeesy N, Aguirre AJ, Chu GC et al (2006) Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci USA 103(15):5947–5952

    Article  PubMed  CAS  Google Scholar 

  14. Sharpless NE, Ramsey MR, Balasubramanian P et al (2004) The differential impact of p16(INK4a) or p19(ARF) deficiency on cell growth and tumorigenesis. Oncogene 23(2):379–385

    Article  PubMed  CAS  Google Scholar 

  15. Maitra A, Adsay NV, Argani P et al (2003) Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol 16(9):902–912

    Article  PubMed  Google Scholar 

  16. Zavoral M, Minarikova P, Zavada F, Salek C, Minarik M (2011) Molecular biology of pancreatic cancer. World J Gastroenterol 17(24):2897–2908

    Article  PubMed  Google Scholar 

  17. Genkinger JM, Spiegelman D, Anderson KE et al (2009) Alcohol intake and pancreatic cancer risk: a pooled analysis of fourteen cohort studies. Cancer Epidemiol Biomarkers Prev 18:765–776

    Article  PubMed  CAS  Google Scholar 

  18. Ben Q, Xu M, Ning X, Liu J, Hong S, Huang W, Zhang H, Li Z (2011) Diabetes mellitus and risk of pancreatic cancer: a meta-analysis of cohort studies. Eur J Cancer 47(13):1928–1937

    Article  PubMed  Google Scholar 

  19. McKay CJ, Glen P, McMillan DC (2008) Chronic inflammation and pancreatic cancer. Best Pract Res Clin Gastroenterol 22(1):65–73

    Article  PubMed  CAS  Google Scholar 

  20. Lowenfels AB, Maisonneuve P, Lankisch PG (1999) Chronic pancreatitis and other risk factors for pancreatic cancer. Gastroenterol Clin North Am 28:673–685

    Article  PubMed  CAS  Google Scholar 

  21. Talamini G, Falconi M, Bassi C, Sartori N, Salvia R, Caldiron E, Frulloni L, Di Francesco V, Vaona B, Bovo P, Vantini I, Pederzoli P, Cavallini G (1999) Incidence of cancer in the course of chronic pancreatitis. Am J Gastroenterol 94:1253–1260

    Article  PubMed  CAS  Google Scholar 

  22. Lowenfels AB, Maisonneuve P (2005) Risk factors for pancreatic cancer. J Cell Biochem 95(4):649–656

    Article  PubMed  CAS  Google Scholar 

  23. Lowes N, Lerch MM, Charnley R et al (2002) Hereditary pancreatitis (HP) and the risk of pancreatic ductal adenocarcinoma (PDAC). Gut 50:A43

    Article  Google Scholar 

  24. Lynch HT, Lanspa SJ, Fitzgibbons RJ Jr et al (1989) Familial pancreatic cancer (part 1): genetic pathology review. Nebr Med J 74:109–112

    PubMed  CAS  Google Scholar 

  25. Bartsch DK, Kress R, Sina-Frey M et al (2004) Prevalence of familial pancreatic cancer in Germany. Int J Cancer 110:902–906

    Article  PubMed  CAS  Google Scholar 

  26. Hemminki K, Li X (2003) Familial and second primary pancreatic cancers: a nationwide epidemiologic study from Sweden. Int J Cancer 103:525–530

    Article  PubMed  CAS  Google Scholar 

  27. Tersmette AC, Petersen GM, Offerhaus GJ et al (2001) Increased risk of incident pancreatic cancer among first-degree relatives of patients with familial pancreatic cancer. Clin Cancer Res 7:738–744

    PubMed  CAS  Google Scholar 

  28. Klein AP, Brune KA, Petersen GM et al (2004) Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res 64:2634–2638

    Article  PubMed  CAS  Google Scholar 

  29. Rulyak SJ, Lowenfels AB, Maisonneuve P et al (2003) Risk factors for the development of pancreatic cancer in familial pancreatic cancer kindreds. Gastroenterol 124:1292–1299

    Article  Google Scholar 

  30. Hruban RH, Adsay NV, Albores-Saavedra J et al (2006) Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res 66:95–106

    Article  PubMed  CAS  Google Scholar 

  31. Gopinathan A, Tuveson DA (2008) The use of GEM models for experimental cancer therapeutics. Dis Model Mech 1:83–86

    Article  PubMed  Google Scholar 

  32. Hingorani SR, Petricoin EF, Maitra A et al (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 4:437–450

    Article  PubMed  CAS  Google Scholar 

  33. Hingorani SR, Wang L, Multani AS et al (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7:469–483

    Article  PubMed  CAS  Google Scholar 

  34. Guerra C, Schuhmacher AJ, Canamero M et al (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11:291–302

    Article  PubMed  CAS  Google Scholar 

  35. Schutte U, Bisht S, Brossart P, Feldmann G (2011) Recent developments of transgenic and xenograft mouse models of pancreatic cancer for translational research. Expert Opin Drug Discov 6(1):33–48

    Article  Google Scholar 

  36. Sandler RS, Halabi S, Baron JA, Budinger S, Paskett E, Keresztes R, Petrelli N, Pipas JM, Karp DD, Loprinzi CL, Steinbach G, Schilsky R (2003) A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N Engl J Med 348:883–890

    Article  PubMed  CAS  Google Scholar 

  37. Baron JA, Cole BF, Sandler RS, Haile RW, Ahnen D, Bresalier R, McKeown-Eyssen G, Summers RW, Rothstein R, Burke CA, Snover DC, Church TR, Allen JI, Beach M, Beck GJ, Bond JH, Byers T, Greenberg ER, Mandel JS, Marcon N, Mott LA, Pearson L, Saibil F, van Stolk RU (2003) A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med 348:891–899

    Article  PubMed  CAS  Google Scholar 

  38. Maitra A, Ashfaq R, Gunn CR, Rahman A, Yeo CJ, Sohn TA, Cameron JL, Hruban RH, Wilentz RE (2002) Cyclooxygenase 2 expression in pancreatic adenocarcinoma and pancreatic intraepithelial neoplasia: an immunohistochemical analysis with automated cellular imaging. Am J Clin Pathol 118:194–201

    Article  PubMed  CAS  Google Scholar 

  39. Gridley G, McLaughlin JK, Ekbom A, Klareskog L, Adami HO, Hacker DG, Hoover R, Fraumeni JE (1993) Incidence of cancer among patients with rheumatoid arthritis. J Natl Cancer Inst 85:307–311

    Article  PubMed  CAS  Google Scholar 

  40. Anderson KE, Johnson TW, Lazovich D, Folsom AR (2002) Association between nonsteroidal anti-inflammatory drug use and the incidence of pancreatic cancer. J Natl Cancer Inst 94:1168–1171

    Article  PubMed  Google Scholar 

  41. Schernhammer ES, Kang JH, Chan AT, Michaud DS, Skinner HG, Giovannucci E, Colditz GA, Fuchs CS (2004) A prospective study of aspirin use and the risk of pancreatic cancer in women. J Natl Cancer Inst 96:22–28

    Article  PubMed  CAS  Google Scholar 

  42. Lara LF, Chari ST (2004) Does an aspirin a day keep pancreas cancer away? Gastroenterology 127:1002–1004

    Article  PubMed  Google Scholar 

  43. Wang W, Abbruzzese JL, Evans DB, Larry L, Cleary KR, Chiao PJ (1999) The nuclear factor-κB RelA transcription factor is constitutively activated in human pancreatic adenocarcinomas cells. Clin Cancer Res 5:119–127

    PubMed  CAS  Google Scholar 

  44. Sclabas GM, Uwagawa T, Schmidt C, Hess KR, Evans DB, Abbruzzese JL, Chiao PJ (2005) Nuclear factor kappa B activation is a potential target for preventing pancreatic carcinoma by aspirin. Cancer 12:2485–2490

    Article  Google Scholar 

  45. Tan XL, Lombard KM, Bamlet WR et al (2011) Aspirin, nonsteroidal anti-inflammatory drugs, acetaminophen, and pancreatic cancer risk: a clinic-based case–control study. Cancer Prev Res 4(11):1835–1841

    Article  CAS  Google Scholar 

  46. Funahashi H, Satake M, Dawson D, Huynh NA, Reber HA, Hines OJ, Eibl G (2007) Delayed progression of pancreatic intraepithelial neoplasia in a conditional Kras(G12D) mouse model by a selective cyclooxygenase-2 inhibitor. Cancer Res 67:7068–7071

    Article  PubMed  CAS  Google Scholar 

  47. Fendrich V, Chen NM, Neef M, Waldmann J, Bucholz M, Feldmann G, Slater EP, Maitra A, Bartsch DK (2010) The angiotensin-I-converting enzyme inhibitor enalapril and aspirin delay progression of pancreatic intraepithelial neoplasia and cancer formation in a genetically engineered mouse model of pancreatic cancer. Gut 59:630–637

    Article  PubMed  CAS  Google Scholar 

  48. Hwang DM, Kundu JK, Shin JW, Lee JC, Lee HJ, Surh YJ (2007) cis-9,trans-11-conjugated linoleic acid down-regulates phorbol ester-induced NF-kappaB activation and subsequent COX-2 expression in hairless mouse skin by targeting IkappaB kinase and PI3K-Akt. Carcinogenesis 28:363–371

    Article  PubMed  CAS  Google Scholar 

  49. Fujioka S, Sclabas GM, Schmidt C et al (2003) Inhibition of constitutive NF-kappa B activity by I kappa B alpha M suppresses tumorigenesis. Oncogene 22:1365–1370

    Article  PubMed  CAS  Google Scholar 

  50. Dong QG, Sclabas GM, Fujioka S et al (2002) The function of multiple IkappaB: NF-kappaB complexes in the resistance of cancer cells to Taxol-induced apoptosis. Oncogene 21:6510–6519

    Article  PubMed  CAS  Google Scholar 

  51. Kopp E, Ghosh S (1994) Inhibition of NF-kappa B by sodium salicylate and aspirin. Sci 265:956–959

    Article  CAS  Google Scholar 

  52. Mayo MW, Norris JL, Baldwin AS (2001) Ras regulation of NF-kB and apoptosis. Methods Enzymol 333:73–87

    Article  PubMed  CAS  Google Scholar 

  53. Mayo MW, Wang CY, Cogswell PC et al (1997) Requirement of NF-κB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science 278:1812–1815

    Article  PubMed  CAS  Google Scholar 

  54. Reddy MK, Baskaran K, Molteni A (1995) Inhibitors of angiotensin-converting enzyme modulate mitosis and gene expression in pancreatic cancer cells. Proc Soc Exp Biol Med 210:221–226

    PubMed  CAS  Google Scholar 

  55. Uemura H, Nakaigawa N, Ishiguro H, Kubota Y (2005) Antiproliferative efficacy of angiotensin II receptor blockers in prostate cancer. Curr Cancer Drug Targets 5:307–323

    Article  PubMed  CAS  Google Scholar 

  56. Yoshiji H, Kuriyama S, Noguchi R, Fukui H (2004) Angiotensin-I converting enzyme inhibitors as potential anti-angiogenic agents for cancer therapy. Curr Cancer Drug Targets 4:555–567

    Article  PubMed  CAS  Google Scholar 

  57. Lever AF, Hole DJ, Gillis CR, McCallum IR, McInnes GT, MacKinnon PL, Meredith PA, Murray LS, Reid JL, Robertson JW (1998) Do inhibitors of angiotensin-I-converting enzyme protect against risk of cancer? Lancet 352:179–184

    Article  PubMed  CAS  Google Scholar 

  58. Khurana V, Caldito G, Barkin JS (2008) Angiotensin converting enzyme inhibitors decrease the incidence of pancreatic cancer: a study of half a million US veterans. Eur J Cancer 1:S47–S48

    Google Scholar 

  59. Arafat HA, Gong Q, Chipitsyna G, Rizvi A, Saa CT, Yeo CJ (2007) Antihypertensives as novel antineoplastics: angiotensin-I-converting enzyme inhibitors and angiotensin II type 1 receptor blockers in pancreatic ductal adenocarcinoma. J Am Coll Surg 204:996–1005

    Article  PubMed  Google Scholar 

  60. Anandanadesan R, Gong Q, Chipitsyna G, Witkiewicz A, Yeo CJ, Arafat HA (2008) Angiotensin II induces vascular endothelial growth factor in pancreatic cancer cells through an angiotensin II type 1 receptor and ERK1/2 signaling. J Gastrointest Surg 12:57–66

    Article  PubMed  Google Scholar 

  61. Mohammed A, Janakiram NB, Li Q et al (2011) The epidermal growth factor receptor inhibitor gefitinib prevents the progression of pancreatic lesions to carcinoma in a conditional LSL-KrasG12D/+ transgenic mouse model. Cancer Prev Res 3:1417–1426

    Article  Google Scholar 

  62. Johnson J, de Mejia EG (2011) Dietary factors and pancreatic cancer: the role of food bioactive compounds. Mol Nutr Food Res 55:58–73

    Article  PubMed  CAS  Google Scholar 

  63. Marti N, Mena P, Canovas J, Micol V, Saura D (2009) Vitamin C and the role of citrus juices as functional food. Nat Prod Commun 4:677–700

    PubMed  CAS  Google Scholar 

  64. Goel A, Kunnumakkara A, Aggarwal B (2008) Curcumin as “curecumin”: from kitchen to clinic. Biochem Pharmacol 75:787–809

    Article  PubMed  CAS  Google Scholar 

  65. Bar-Sela G, Epelbaum R, Schaffer M (2010) Curcumin as an anti-cancer agent: review of the gap between basic and clinical applications. Curr Med Chem 17:190–197

    Article  PubMed  CAS  Google Scholar 

  66. Ujiki M, Ding X, Salabat M, Bentrem D et al (2006) Apigenin inhibits pancreatic cancer cell proliferation through G2/M cell cycle arrest. Mol Cancer 5:76

    Article  PubMed  Google Scholar 

  67. Lee S, Ryu J, Lee K, Woo S et al (2008) Enhanced anti-tumor effect of combination therapy with gemcitabine and apigenin in pancreatic cancer. Cancer Lett 259:39–49

    Article  PubMed  CAS  Google Scholar 

  68. Strouch M, Milam B, Melstrom L, McGill J et al (2009) The flavonoid apigenin potentiates the growth inhibitory effects of gemcitabine and abrogates gemcitabine resistance in human pancreatic cancer cells. Pancreas 38:409–415

    Article  PubMed  CAS  Google Scholar 

  69. Melstrom L, Salabat M, Ding X, Milam B et al (2008) Apigenin inhibits the GLUT-1 glucose transporter and the phosphoinositide 3-kinase/Akt pathway in human pancreatic cells. Pancreas 37:426–431

    Article  PubMed  CAS  Google Scholar 

  70. Zhang Y, Chen A, Li M, Chen C, Yao Q (2008) Ginkgo biloba extract kaempferol inhibits cell proliferation and induces apoptosis in pancreatic cancer cells. J Surg Res 148:17–23

    Article  PubMed  CAS  Google Scholar 

  71. Aghdassi A, Phillips P, Dudeja V, Dhaulakhandi D et al (2007) Heat shock protein 70 increases tumorigenicity and inhibits apoptosis in pancreatic adenocarcinoma. Cancer Res 67:616–625

    Article  PubMed  CAS  Google Scholar 

  72. Li Y, Ahmed F, Ali S, Philip P et al (2005) Inactivation of nuclear factor κB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res 65:6934–6942

    Article  PubMed  CAS  Google Scholar 

  73. Banerjee S, Zhang Y, Ali S, Bhuiyan M et al (2005) Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer. Cancer Res 65:9064–9072

    Article  PubMed  CAS  Google Scholar 

  74. Wang Z, Zhang Y, Banerjee S, Li Y, Sarkar F (2006) Inhibition of nuclear factor κB activity by genistein is mediated via Notch-1 signaling pathway in pancreatic cancer cells. Int J Cancer 118:1930–1936

    Article  PubMed  CAS  Google Scholar 

  75. Wang Z, Zhang Y, Li Y, Banerjee S et al (2006) Down-regulation of Notch-1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells. Mol Cancer Ther 5:483–493

    Article  PubMed  CAS  Google Scholar 

  76. El-Rayes B, Ali S, Ali I, Philip P et al (2006) Potentiation of the effect of erlotinib by genistein in pancreatic cancer: the role of Akt and nuclear factor-κB. Cancer Res 66:10553–10559

    Article  PubMed  CAS  Google Scholar 

  77. Wang Z, Ahmad A, Banerjee S, Azmi A et al (2010) FoxM1 is a novel target of a natural agent of pancreatic cancer. Pharm Res 27:1159–1168

    Article  PubMed  CAS  Google Scholar 

  78. Bai H, Li H, Zhang W, Matkowskyj KA, Liao J, Srivastava SK, Yang GY (2011) Inhibition of chronic pancreatitis and pancreatic intraepithelial neoplasia (PanIN) by capsaicin in LSL-KrasG12D/Pdx1-Cre mice. Carcinogenesis 32:1689–1696

    Article  PubMed  CAS  Google Scholar 

  79. Tsao A, Kim E, Hong W (2004) Chemoprevention of cancer. CA Cancer J Clin 54:150–180

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Fendrich.

Additional information

Review criteria

The data for this review were compiled by searching the PubMed and MEDLINE databases for articles published from 1 January 2000 to 31 December 2011. Older key publications in the field of chemoprevention for pancreatic cancer were also included. The search term ‘chemoprevention’ was used in combination with the terms ‘pancreatic cancer’, ‘PanINs’, ‘mouse models’ and ‘agents’. The bibliography of each relevant article was screened for further relevant studies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fendrich, V. Chemoprevention of pancreatic cancer—one step closer. Langenbecks Arch Surg 397, 495–505 (2012). https://doi.org/10.1007/s00423-012-0916-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00423-012-0916-x

Keywords

Navigation