Skip to main content
Log in

Modeling habituation in rat EEG-evoked responses via a neural mass model with feedback

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Habituation is a generic property of the neural response to repeated stimuli. Its strength often increases as inter-stimuli relaxation periods decrease. We propose a simple, broadly applicable control structure that enables a neural mass model of the evoked EEG response to exhibit habituated behavior. A key motivation for this investigation is the ongoing effort to develop model-based reconstruction of multi-modal functional neuroimaging data. The control structure proposed here is illustrated and validated in the context of a biophysical neural mass model, developed by Riera et al. (Hum Brain Mapp 27(11):896–914, 2006; 28(4):335–354, 2007), and of simplifications thereof, using data from rat EEG response to medial nerve stimuli presented at frequencies from 1 to 8 Hz. Performance was tested by predictions of both the response to the next stimulus based on the current one, and also of continued stimuli trains over 4-s time intervals based on the first stimulus in the interval, with similar success statistics. These tests demonstrate the ability of simple generative models to capture key features of the evoked response, including habituation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andry ML, Luttges MW (1972) Neural habituation in garter snakes. Physiol Behav 9: 107–111

    Article  PubMed  CAS  Google Scholar 

  • Bower JM, Beeman D (1998) The book of GENESIS: exploring realistic neural models with the GEneral NEural SImulation System. Springer, New York

  • Bristol AS, Carew TJ (2005) Differential role of inhibition in habituation of two independent afferent pathways to a common motor output. Learn Mem 12: 52–60

    Article  PubMed  Google Scholar 

  • Coombes S, Venkov N, Shiau L, Bojak I, Liley DTJ, Laing C (2007) Modeling electrocortical activity through improved local approximations of integral neural field equations. Phys Rev E 76: 051901–1051908

    Article  CAS  Google Scholar 

  • Daunizeau J, Grova C, Marrelec G, Mattout J, Jbabdi S, Plgrini-Issac M, Lina J, Benali H (2007) Symmetrical event-related eeg/fmri information fusion in a variational Bayesian framework. Neuroimage 3: 69–87

    Article  Google Scholar 

  • David O, Friston KJ (2003) A neural mass model for MEG/EEG: coupling and neuronal dynamics. Neuroimage 20: 1743–1755

    Article  PubMed  Google Scholar 

  • David O, Kilner JM, Friston KJ (2006) Mechanisms of evoked and induced responses in MEG/EEG. Neuroimage 31(4): 1580–1591. doi:10.1016/j.neuroimage.2006.02.034

    Article  PubMed  Google Scholar 

  • de Schutter E, Bower JM (1994a) An active membrane model of the cerebellar purkinje cell. I. Simulation of current clamps in slice. J Neurophysiol 71: 375–400

    PubMed  Google Scholar 

  • de Schutter E, Bower JM (1994b) An active membrane model of the cerebellar purkinje cell. II. Simulation of synaptic responses. J Neurophysiol 71: 401–419

    PubMed  CAS  Google Scholar 

  • Franceschini MA, Nissil I, Wu W, Diamond SG, Bonmassar G, Boas D (2008) Coupling between somatosensory evoked potentials and hemodynamic response in the rat. Neuroimage 41(2): 189–203

    Article  PubMed  Google Scholar 

  • Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage 19: 1273–1302

    Article  PubMed  CAS  Google Scholar 

  • Garrido MI, Kilner JM, Kiebel SJ, Stephan KE, Baldeweg T, Friston KJ (2009) Repetition suppression and plasticity in the human brain. Neuroimage 48(1): 269–279

    Article  PubMed  Google Scholar 

  • Ghigliazza RM, Holmes P (2004) Minimal models of bursting neurons: How multiple currents, conductances, and timescales affect bifurcation diagrams. SIAM J Appl Dyn Syst 3: 636–670

    Article  Google Scholar 

  • Gorban AN, Kégl B, Zinovyev AY (2007) Principal manifolds for data visualization and dimension reduction. Springer, Berlin

    Google Scholar 

  • Hall R (1968) Habituation of evoked potentials in the rat under conditions of behavioral control. Electroencephalogr Clin Neurophysiol 24(2): 155–165

    Article  PubMed  CAS  Google Scholar 

  • Horwitz B, Poeppel D (2002) How can eeg/meg and fmri/pet data be combined. Hum Brain Mapp 17(1): 1–3

    Article  PubMed  Google Scholar 

  • Jansen BH, Rit VG (1995) Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern 73: 357–366

    Article  PubMed  CAS  Google Scholar 

  • Kiebel SJ, David O, Friston KJ (2006) Dynamic causal modelling of evoked responses in EEG/MEG with lead field parameterization. Neuroimage 30(4): 1273–1284. doi:10.1016/j.neuroimage.2005.12.055

    Article  PubMed  Google Scholar 

  • Lahaye PJ, Baillet S, Poline JB, Garnero L (2004) Fusion of simultaneous fmri/eeg data based on the electro-metabolic coupling. 2nd Proc IEEE, ISBI, pp 864–867

  • Liley DTJ, Cadusch PJ, Dafilis MP (2002) A spatially continuous mean field theory of electrocortical activity. Comput Neural Syst 13: 67–113

    Google Scholar 

  • Manning CD, Raghavan P, Schtze H (2008) An introduction to information retrieval. Cambridge University press, Cambridge

    Google Scholar 

  • May ML, Hoy RR (1991) Habituation of the ultrasound-induced acoustic startle response in flying crickets. J Exp Biol 159: 489–499

    PubMed  CAS  Google Scholar 

  • Mosher JJ, Leahy R (1998) Recursive music: a framework for EEG and MEG source localization. IEEE Trans Biomed Eng 45(11): 1342

    Article  PubMed  CAS  Google Scholar 

  • Nelles O (2001) Nonlinear system identification: from classical approaches to neural networks and fuzzy models. Springer, Heidelberg

  • Noguchi Y, Inui K, Kakigi R (2004) Temporal dynamics of neural adaptation effect in the human visual ventral stream. J Neurosci 24(28): 6283–6290

    Article  PubMed  CAS  Google Scholar 

  • Purves D (2004) Neuroscience. Sinauer, Maryland

    Google Scholar 

  • Rankin CH, Abrams T, Barry RJ, Bhatnagar S, Clayton D, Colombo J, Coppola G, Geyer MA, Glanzman DL, Marsland S, McSweeney F, Wilson DA, Wu CF, Thompson RF (2009) Habituation revisited: an updated and revised description of the behavioral characteristics of habituation. Neurobiol Learn Mem 92(2): 135–138

    Article  PubMed  Google Scholar 

  • Riera JJ, Xiaohong W, Jimenez JC, Kawashima R (2006) Nonlinear local electrovascular coupling. I: a theoretical model. Hum Brain Mapp 27(11): 896–914

    Article  PubMed  Google Scholar 

  • Riera JJ, Xiaohong W, Jimenez JC, Kawashima R, Ozaki T (2007) Nonlinear local electrovascular coupling. II: from data to neuronal masses. Hum Brain Mapp 28(4): 335–354

    Article  PubMed  CAS  Google Scholar 

  • Shea SD, Katz LC, Mooney R (2008) Noradrenergic induction of odor-specific neural habituation and olfactory memories. J Neuroscience 28: 10711–10719

    Article  CAS  Google Scholar 

  • Shilnikov AL, Rulkov NF (2004) Subthreshold oscillations in a map-based neuron model. Phys Lett A 328: 177–184

    Article  CAS  Google Scholar 

  • Sornmo L, Laguna P (2005) Bioelectric signal processing in cardiac and neurological applications. Elesvier Academic press, Boston

    Google Scholar 

  • Stark H, Woods J (2001) Probability and random processes with applications to signal processing. Prentice hall, Englewood Cliffs

    Google Scholar 

  • Stoica P, Moses RL (1997) Introduction to spectral analysis. Prentice hall, Upper Saddle River

    Google Scholar 

  • Stuart J (1971) Nonlinear stability theory. Ann Rev Fluid Mech 3: 347–370

    Article  Google Scholar 

  • Tadmor G, Lehmann O, Noack BR, Morzyński M (2011) Galerkin models enhancements for flow control. In: Noack BR, Morzyński M, Tadmor G (eds) Reduced-order modelling for flow control, CISM courses and lectures, vol 528, Springer, Vienna

  • Thompson R, Spencer W (1966) Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol Rev 73: 16–43

    Article  PubMed  CAS  Google Scholar 

  • Tully T, Koss S (1992) Habituation of the jump reflex to olfactory cues in normal and mutant Drosophila. Soc Neurosci Abstr 8:942

    Google Scholar 

  • Zuker RS (1972) Crayfish escape behavior and central synapses. II. physiological mechanisms underlying behavioral habituation. J Neurophysiol 35: 621–637

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivas Laxminarayan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laxminarayan, S., Tadmor, G., Diamond, S.G. et al. Modeling habituation in rat EEG-evoked responses via a neural mass model with feedback. Biol Cybern 105, 371–397 (2011). https://doi.org/10.1007/s00422-012-0472-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-012-0472-z

Keywords

Navigation