Skip to main content

Advertisement

Log in

What do the basal ganglia do? A modeling perspective

  • Review
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Basal ganglia (BG) constitute a network of seven deep brain nuclei involved in a variety of crucial brain functions including: action selection, action gating, reward based learning, motor preparation, timing, etc. In spite of the immense amount of data available today, researchers continue to wonder how a single deep brain circuit performs such a bewildering range of functions. Computational models of BG have focused on individual functions and fail to give an integrative picture of BG function. A major breakthrough in our understanding of BG function is perhaps the insight that activities of mesencephalic dopaminergic cells represent some form of ‘reward’ to the organism. This insight enabled application of tools from ‘reinforcement learning,’ a branch of machine learning, in the study of BG function. Nevertheless, in spite of these bright spots, we are far from the goal of arriving at a comprehensive understanding of these ‘mysterious nuclei.’ A comprehensive knowledge of BG function has the potential to radically alter treatment and management of a variety of BG-related neurological disorders (Parkinson’s disease, Huntington’s chorea, etc.) and neuropsychiatric disorders (schizophrenia, obsessive compulsive disorder, etc.) also. In this article, we review the existing modeling literature on BG and hypothesize an integrative picture of the function of these nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizawa H, Tanji J (1994) Corticocortical and thalamocortical responses of neurons in the monkey primary motor cortex and their relation to a trained motor task. J Neurophysiol 71: 550–560

    PubMed  CAS  Google Scholar 

  • Alexander GE (1987) Selective neuronal discharge in monkey Putamen reflects intended direction of planned limb movements. Exp Brain Res 67: 623–634

    Article  PubMed  CAS  Google Scholar 

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, prefrontal and limbic functions. Prog Brain Res 85: 119–146

    Article  PubMed  CAS  Google Scholar 

  • Arbib MA, Erdi P, Szentagothai J (1998) Neural organization: structure, function and dynamics. MIT Press, Cambridge, p 203

    Google Scholar 

  • Aston-Jones G, Rajkowski J, Kubiak P, Alexinsky T (1994) Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J Neurosci 14: 4467–4480

    PubMed  CAS  Google Scholar 

  • Bapi RS, Doya K (1998) A sequence learning architecture based on cortico-basal ganglionic loops and reinforcement learning. In: ICONIP’98, Kita-Kyushu, Japan, 21–26 Oct 1998

  • Bapi RS, Miyapuram KP, Graydon FX, Doya K (2006) fMRI investigation of cortical and subcortical networks in the learning of abstract and effector-specific representations of motor sequences. Neuroimage 32(2): 714–727

    Article  PubMed  Google Scholar 

  • Barto AG (1995) Adaptive critics and the basal ganglia. In: Houk JC, Davis J, Beiser D (eds) Models of information processing in the basal ganglia. MIT Press, Cambridge, pp 215–232

    Google Scholar 

  • Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of Parkinsonism. J Neurophysiol 72: 507–520

    PubMed  CAS  Google Scholar 

  • Bergman H, Feingold A, Nini A, Raz A, Slovin H, Abeles M, Vaadia E (1998) Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates. Trends Neurosci 21: 32–38

    Article  PubMed  CAS  Google Scholar 

  • Berns GS, Sejnowski TJ (1995) A computational model of local memory in the primate pallidal-subthalamic circuit. Soc Neurosci Abstr 21: 678

    Google Scholar 

  • Berns GS, Sejnowski TJ (1998) A computational model of how the Basal ganglia produce sequences. J Cognit Neurosci 10: 108–121

    Article  CAS  Google Scholar 

  • Bhatia KP, Marsden CD (1994) The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain 117: 859–876

    Article  PubMed  Google Scholar 

  • Brown PAO, Mazzone P, Insola A, Tonali P, Di Lazzaro V (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinsons disease. J Neurosci 21: 1033–1038

    PubMed  CAS  Google Scholar 

  • Buhusi CV, Meck WH (2005) What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci 6: 755–756

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri A, Behan PO (2000a) Fatigue in neurological disorders. Lancet 179: 34–42

    CAS  Google Scholar 

  • Chaudhuri A, Behan P (2000b) Neurological dysfunction in chronic fatigue syndrome. J Chron Fatigue Syndr 6: 51–68

    Article  Google Scholar 

  • Chaudhuri A, Behan P (2000c) Fatigue and basal ganglia. J Neurol Sci 179: 34–42

    Article  PubMed  CAS  Google Scholar 

  • Chesselet M, Delfs JM (2003) Basal ganglia and movement disorders: an update. Trends Neurosci 19(10): 417–422

    Google Scholar 

  • Churchland MM, Yu BM, Ryu SI, Santhanam G, Shenoy KV (2006) Neural variability in premotor cortex provides a signature of motor preparation. J Neurosci 26: 3697–3712

    Article  PubMed  CAS  Google Scholar 

  • Clark D, Boutros N, Mendez M (2005) The brain and behavior. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Cohen JD, Braver TS, Brown JW (2002) Computational perspectives on dopamine function in prefrontal cortex. Curr Opin Neurobiol 12: 223–229

    Article  PubMed  CAS  Google Scholar 

  • Contreras-Vidal JL, Schultz W (1999) A predictive reinforcement model of dopamine neurons for learning approach behavior. J Comput Neurosci 6(3): 191–214

    Article  PubMed  CAS  Google Scholar 

  • Contreras-Vidal JL, Stelmach GE (1995) A neural model of basal ganglia-thalamocortical relations in normal and parkinsonian movement. Biol Cybern 73(5): 467–476

    Article  PubMed  CAS  Google Scholar 

  • Contreras-Vidal JL, Stelmach GE (1996) Effects of Parkinsonism on motor control. Life Sci 58: 165–176

    Article  PubMed  CAS  Google Scholar 

  • Crammond DJ, Kalaska JF (1989) Neuronal activity in primate parietal cortex area 5 varies with intended movement direction during an instructed-delay period. Exp Brain Res 76: 458–462

    Article  PubMed  CAS  Google Scholar 

  • Cunnington R, Iansek R, Bradshaw JL, Phillips JG (1995) Movement-related potentials in Parkinsons-disease presence and predictability of temporal and spatial cues. Brain 118: 935–950

    Article  PubMed  Google Scholar 

  • Czernecki V, Pillon B, Houeto JL, Pochon JB, Levy R, Dubois B (2002) Motivation, reward, and Parkinson’s disease: influence of dopatherapy. Neuropsychologia 40: 2257–2267

    Article  PubMed  CAS  Google Scholar 

  • Daw ND (2003) Reinforcement Learning models of the dopamine system and their behavioral implications. Ph.D. thesis. Carnegie Mellon University, Pittsburgh

  • Daw ND, Touretzky DS (2000) Behavior results suggest an average reward TD model of dopamine function. Neurocomputing 32: 679–684

    Article  Google Scholar 

  • Daw ND, O’doherty JP, Seymour B, Dayan P, Dolan RJ (2006) Cortical substrates for exploratory decisions in humans. Nature 441: 876–879

    Article  PubMed  CAS  Google Scholar 

  • Dean WH, Davis GD (1958) Behavior changes following caudate lesions in rhesus monkeys. J Neurophysiol 22: 165–187

    Google Scholar 

  • Di Chiara G, Bassareo V, Fenu S, De Luca MA, Spina L, Cadoni C, Acquas E, Carboni E, Valentini V, Lecca D (2004) Dopamine and drug addiction: the nucleus accumbens shell connection. Neuropharmacology 47(Suppl 1): 227–241

    Article  PubMed  CAS  Google Scholar 

  • Dorigo M, Colombetti M (1994) Robot shaping: developing autonomous agents through learning. Artif Intell 71(2): 321–370

    Article  Google Scholar 

  • Doya K (2002) Metalearning and neuromodulation. Neural Netw 15(4): 495–506

    Article  PubMed  Google Scholar 

  • Doyon J, Penhune V, Ungerleider LG (2003) Distinct contribution of the corticostriatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia 41(3): 252–262

    Article  PubMed  Google Scholar 

  • Engelborghs S, Marien P, Pickut BA, Verstraeten S, De Deyn PP (2000) Loss of psychic self-activation after paramedian bithalamic infarction. Stroke 31: 1762–1765

    PubMed  CAS  Google Scholar 

  • Eslinger PJ, Damasio AR (1985) Severe disturbance of higher cognition after bilateral frontal lobe ablation: patient EVR. Neurology 35: 1731–1741

    PubMed  CAS  Google Scholar 

  • Fiorillo CD, Tobler PN, Schultz W (2003) Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299(5614): 1898–1902

    Article  PubMed  CAS  Google Scholar 

  • Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive deficits in medicated and non-medicated Parkinsonism. J Cognit Neurosci 17: 51–72

    Article  Google Scholar 

  • Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A (1994) The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann Intern Med 121: 953–959

    PubMed  CAS  Google Scholar 

  • Fuster JM (1997) The prefrontal cortex. Raven Press, New York

    Google Scholar 

  • Gabrieli JDE, Poldrack RA, Desmond JE (1995) The role of left prefrontal cortex in language and memory. Adv Neurol 66: 21–34

    Google Scholar 

  • Gangadhar G, Joseph D, Chakravarthy VS (2007) An oscillatory neuromotor model of handwriting generation. Int J Doc Anal Recognit 10(2): 69–84

    Article  Google Scholar 

  • Gangadhar G, Joseph D, Chakravarthy VS (2008) Understanding Parkinsonian Handwriting using a computational model of basal ganglia. Neural Comput 20: 1–35

    Article  Google Scholar 

  • Georgiou N, Iansek R, Bradshaw JL, Phillips JG, Mattingley JB (1993) An evaluation of the role of internal cues in the pathogenesis of Parkinsonian hypokinesia. Brain 116: 1575–1587

    Article  PubMed  Google Scholar 

  • Georgopoulos AP, Grillner S (1989) Visuomotor coordination in reaching and locomotion. Science 245: 1209–1210

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, Wilson CJ (1996) The basal ganglia. In: Swanson LW, Bjorklund A, Hokfelt T (eds) Handbook of chemical neuroanatomy. Elsevier, Amsterdam, pp 371–468

    Google Scholar 

  • Ghika-Schmid F, Bogousslavsky J (2000) The acute behavioral syndrome of anterior thalamic infarction: a prospective study of 12 cases. Ann Neurol 48: 220–227

    Article  PubMed  CAS  Google Scholar 

  • Giladi N, McMahon D, Przedborski S, Flaster E, Guillory S, Kostic V, Fahn S (1992) Motor blocks in Parkinson’s disease. Neurology 42: 333–339

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behaviour by representational memory. In: Plum F, Mountcastle U (eds) Handbook of physiology. The American Physiological Society, Washington, pp 373–417

    Google Scholar 

  • Heise C, Kayalioglu G (2008) Cytoarchitecture of the spinal cord. In: Watson C, Paxinos G, Kayaliyoglu G (eds) The spinal cord. Elsevier, London

    Google Scholar 

  • Hikosaka O, Nakahara H, Rand MK, Sakai K, Lu X, Nakamura K, Miyachi S, Doya K (1999) Parallel neural networks for learning sequential procedures. Trends Neurosci 22: 464–471

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80: 953–978

    PubMed  CAS  Google Scholar 

  • Hollerbach JM (1981) An oscillation theory of handwriting. Biol Cybern 39: 139–156

    Article  Google Scholar 

  • Houk JC, Davis JL, Beiser DG (1995) Models of information processing in the basal ganglia. MIT Press, Cambridge

    Google Scholar 

  • Hurtado JM, Graym CM, Tamas LB, Sigvardt KA (1999) Dynamics of tremor-related oscillations in the human globus Pallidus: a single case study. Neurobiology 96: 1674–1679

    CAS  Google Scholar 

  • Isoda M, Hikosaka O (2008) Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. J Neurosci 28(28): 7209–7218

    Article  PubMed  CAS  Google Scholar 

  • Iversen SD (1979) Behaviour after neostriatal lesions in animals. In: Divac I, Oberg RGB (eds) The neostriatum. Pergamon, Oxford, pp 195–210

    Google Scholar 

  • Joel D, Niv Y, Ruppin E (2002) Actor-critic models of the basal ganglia: new anatomical and computational perspectives. Neural Netw 15: 535–547

    Article  PubMed  Google Scholar 

  • Kakade S, Dayan P (2002) Dopamine: generalization and Bonuses. Neural Netw 14(4): 549–559

    Article  Google Scholar 

  • Keath JR, Iacoviello MP, Barrett LE, Mansvelder HD, McGehee DS (2007) Differential modulation by nicotine of substantia nigra versus ventral tegmental area dopamine neurons. J Neurophysiol 98: 3388–3396

    Article  PubMed  CAS  Google Scholar 

  • Knight RT, Grabowecky MF, Scabini D (1995) Role of human prefrontal cortex in attention control. Adv Neurol 66: 21–36

    PubMed  CAS  Google Scholar 

  • Kornhuber HH, Deecke L (1990) Readiness for movement—the Bereitschafts potential-story. Curr Contents Life Sci 33(22)

  • Kubota K, Hamada I (1978) Visual tracking and neuron activity in the post-arcuate area in monkeys. J Physiol (Paris) 74: 297–312

    CAS  Google Scholar 

  • Kubota K, Funahashi S (1982) Direction-specific activities of dorsolateral prefrontal and motor cortex pyramidal tract neurons during visual tracking. J Neurophysiol 47: 362–376

    PubMed  CAS  Google Scholar 

  • Lang W, Cheyne D, Kristeva R, Beisteiner R, Lindinger G, Deecke L (1991) Three-dimensional localization of SMA activity preceding voluntary movement. Exp Brain Res 87: 688–695

    Article  PubMed  CAS  Google Scholar 

  • Leblois A, Boraud T, Meissner W, Bergman H, Hansel D (2006) Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. J Neurosci 26: 3567–3583

    Article  PubMed  CAS  Google Scholar 

  • Levy R, Dubois B (2005) Apathy and the functional anatomy of the prefrontal cortex—basal ganglia circuits. Cereb Cortex 16: 916–928

    Article  PubMed  Google Scholar 

  • Magnin M, Morel A, Jeanmonod D (2000) Single-unit analysis of the pallidum, thalamus and subthalamic nucleus in parkinsonian patients. Neuroscience 96: 549–564

    Article  PubMed  CAS  Google Scholar 

  • Malapani C, Rakitin B, Levy R, Meck WH, Deweer B, Dubois B, Gibbon J (1998) Coupled temporal memories in Parkinson’s disease: a dopamine-related dysfunction. J Cognit Neurosci 10: 316–331

    Article  CAS  Google Scholar 

  • Marsden CD (1982) The mysterious motor function of the basal ganglia: the Robert Wartenberg Lecture. Neurology 32(5): 514–539

    PubMed  CAS  Google Scholar 

  • Matell MS, Meck WH (2004) Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cognit Brain Res 21: 139–170

    Article  Google Scholar 

  • Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50: 381–425

    Article  PubMed  CAS  Google Scholar 

  • Mohamed M, Chakravarthy VS, Subramanian D, Ravindran B (2009) The role of basal ganglia in performing simple reaching movements: a computational model. In: Proceedings of 14th conference of the international graphonomics society, Dijon, France, 13–16 September

  • Montague PR, Berns G (2002) Neural economics and the biological substrates of valuation. Neuron 36: 265–284

    Article  PubMed  CAS  Google Scholar 

  • Montague PR, Dayan P, Person C, Sejnowski TJ (1995) Bee foraging in uncertain environments using predictive Hebbian learning. Nature 377: 725–728

    Article  PubMed  CAS  Google Scholar 

  • Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16: 1936–1947

    PubMed  CAS  Google Scholar 

  • Montague PR, Hyman SE, Cohen JD (2004) Computational roles for dopamine in behavioral control. Nature 431: 760–767

    Article  PubMed  CAS  Google Scholar 

  • Nini A, Feingold A, Slovin H, Bergman H (1995) Neurons in the globus Pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of Parkinsonism. J Neurophysiol 74: 1800–1805

    PubMed  CAS  Google Scholar 

  • Obeso JA, Rodriguez-Oroz MC, Blesa FJ, Guridi J (2006) The globus pallidus pars externa and Parkinson’s disease. Ready for prime time?. Exp Neurol 202: 1–7

    Article  PubMed  Google Scholar 

  • Oorschot DE, Tunstall MJ, Wickens JR (2002) Local connectivity between striatal spiny projection neurons: a re-evaluation. In: Nicholson L, Faull R (eds) Basal ganglia VII. Plenum Press, New York

    Google Scholar 

  • O’Reilly RC, Frank MJ (2006) Making working memory work: a computational model of learning in the frontal cortex and basal ganglia. Neural Comput 18: 283–328

    Article  PubMed  Google Scholar 

  • Packard MG, Knowlton BJ (2002) Learning and memory functions of the basal ganglia. Annu Rev Neurosci 25: 563–593

    Article  PubMed  CAS  Google Scholar 

  • Packard MG, McGaugh JL (1996) Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol Learn Memory 65: 65–72

    Article  CAS  Google Scholar 

  • Packard MG, Hirsh R, White NM (1989) Differential effects of fornix and caudate nucleus lesions on two radial maze tasks: Evidence for multiple memory systems. J Neurosci 9: 1465–1472

    PubMed  CAS  Google Scholar 

  • Plenz D, Kitai ST (1999) A basal ganglia pacemaker formed by the subthalamic nucleus and external globus Pallidus. Nature 400: 677–682

    Article  PubMed  CAS  Google Scholar 

  • Prescott TJ, Gurney K, Montes-Gonzalez F, Humphries M, Redgrave P (2002) The robot basal ganglia: action selection by an embedded model of the basal ganglia. In: Nicholson L, Faull R (eds) Basal ganglia VII. Plenum Press, New York, pp 349–356

    Google Scholar 

  • Raz A, Vaadia E, Bergman H (2000) Firing patterns of spontaneous discharge of Pallidal neurons in the model of Parkinsonism. J Neurosci 20: 8559–8571

    PubMed  CAS  Google Scholar 

  • Redgrave P, Prescott TJ, Gurney K (1999a) Is the short-latency dopamine response too short to signal reward error. Trends Neurosci 22: 146–151

    Article  PubMed  CAS  Google Scholar 

  • Redgrave P, Prescott TJ, Gurney K (1999b) The basal ganglia: a vertebrate solution to the selection problem?. Neuroscience 89: 1009–1023

    Article  PubMed  CAS  Google Scholar 

  • Russell VA, Allim R, Lamm MC, Taljaard JJ (1992) Regional distribution of monoamines and dopamine D1- and D2-receptors in the striatum of the rat. Neurochem Res 17: 387–395

    Article  PubMed  CAS  Google Scholar 

  • Sacco P, Hope PAJ, Thickbroom GW, Byrnes ML, Mastaglia FL (1999) Corticomotor excitability and perception of effort during sustained exercise in the chronic fatigue syndrome. Clin Neurophysiol 110: 1883–1891

    Article  PubMed  CAS  Google Scholar 

  • Scheiner R, Pluckhahn S, Oney B, Blenau W, Erber J (2002) Behavioral pharmacology of octopamine, tyramine, and dopamine in honey bees. Neurology 42: 333

    Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80: 1–27

    PubMed  CAS  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275: 1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Servan-Schreiber D, Printz H, Cohen JD (1990) A network model of catecholamine effects: gain, signal-to-noise ratio and behavior. Science 249: 892–895

    Article  PubMed  CAS  Google Scholar 

  • Smith Y (2008) The thalamus. In: Michael Conn P (eds) Neuroscience in medicine. Humana Press, New York

    Google Scholar 

  • Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86: 353–387

    Article  PubMed  CAS  Google Scholar 

  • Squire LR, Zola SM (1996) Structure and function of declarative and nondeclarative memory systems. Proc Natl Acad Sci USA 93: 13515–13522

    Article  PubMed  CAS  Google Scholar 

  • Sridharan D, Prashanth PS, Chakravarthy VS (2006) The role of the basal ganglia in exploration in a neural model based on reinforcement learning. Int J Neural Syst 16: 111–124

    Article  PubMed  CAS  Google Scholar 

  • Starr A, Scalise A, Gordon R, Michalewski HJ, Caramia MD (2000) Motor cortex excitability in chronic fatigue syndrome. Clin Neurophysiol 111: 2025–2031

    Article  PubMed  CAS  Google Scholar 

  • Stout JC, Johnson SA (2005) Cognitive impairment and dementia in basal ganglia disorders. Curr Neurol Neurosci Rep 5: 355–363

    Article  PubMed  Google Scholar 

  • Stuss DT, Van Reekum R, Murphy KJ (2000) Differentiation of states and causes of apathy. In: Borod JC (eds) The Neuropsychology of emotion. Oxford University Press, Oxford, pp 340–363

    Google Scholar 

  • Suri RE, Schultz W (1999) A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task. Neuroscience 91: 871–890

    Article  PubMed  CAS  Google Scholar 

  • Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, Cambridge

    Google Scholar 

  • Sutton RS, Barto AG (1990) Time-derivative models of Pavlovian reinforcement. In: Gabriel M, Moore J (eds) Learning and computational neuroscience. MIT Press, Cambridge

    Google Scholar 

  • Tanji J (1994) The supplementary motor area in the cerebral cortex. Neurosci Res 19: 251–268

    Article  PubMed  CAS  Google Scholar 

  • Terman D, Rubin JE, Yew AC, Wilson CJ (2002) Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci 22: 2963–2976

    PubMed  CAS  Google Scholar 

  • Thut G, Schultz W, Roelcke U, Nienhusmeier M, Missimer J, Maguire RP, Leenders KL (1997) Activation of the human brain by monetary reward. Neuroreport 8: 1225–1228

    Article  PubMed  CAS  Google Scholar 

  • Tremblay L, Schultz W (1999) Relative reward preference in primate orbitofrontal cortex. Nature 398: 704–708

    Article  PubMed  CAS  Google Scholar 

  • Usher M, Cohen JD, Servan-Schreiber D, Rajkowski J, Aston-Jones G (1999) The role of locus coeruleus in the regulation of cognitive performance. Science 22: 549–554

    Article  Google Scholar 

  • Wickens J (1997) Basal ganglia: structure and computations. Netw Comput Neural Syst 8(4): R77–R109

    Article  Google Scholar 

  • Wise PM (1982) Norepinephrine and dopamine activity in microdissected brain areas of the middle-aged and young rat on Proestrus. Biol Reprod 27: 562–574

    Article  PubMed  CAS  Google Scholar 

  • Worgotter F, Porr B (2005) Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural Comput 17: 245–319

    Article  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ (2006) The role of basal ganglia in habit formation. Nat Neurosci Rev 7: 464–476

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Chakravarthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakravarthy, V.S., Joseph, D. & Bapi, R.S. What do the basal ganglia do? A modeling perspective. Biol Cybern 103, 237–253 (2010). https://doi.org/10.1007/s00422-010-0401-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-010-0401-y

Keywords

Navigation