Skip to main content
Log in

Modelling memory functions with recurrent neural networks consisting of input compensation units: II. Dynamic situations

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Modelling the cognitive abilities of humans or animals or building agents that are supposed to behave cognitively requires modelling a memory system that is able to store and retrieve various contents. The content to be stored is assumed to comprise information about more or less invariant environmental objects as well as information about movements. A combination of information about both objects and movements may be called a situation model. Here we focus, in part, on models storing dynamic patterns. In particular, two abilities of humans in representing dynamical systems receive special focus: the capability of representing the acceleration of objects, as can be found in the movement of a pendulum or freely falling objects, and the capability of representing actions of transfer, i.e. motion from one point to another, have been modelled using recurrent networks consisting of input compensation units. In addition, possibilities of combining static and dynamic properties within a single model are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barsalou LB (1999) Perceptual symbols systems. Behav Brain Sci 22:577–660

    Article  PubMed  CAS  Google Scholar 

  • Brouwer A-M, Brenner E, Smeets JBJ (2002) Perception of acceleration with short presentation times: can acceleration be used in interception?. Percept Psychophys 64:1160–1168

    PubMed  Google Scholar 

  • Cangelosi A (2004) The sensorimotor bases of linguistic structure: experiments with grounded adaptive agents. In: Proceedings of the 8th international conference on simulation of adaptive behavior. MIT Press, Cambridge, MA, pp 487–496

  • Chomsky N (1957) Syntactic structures. Mouton, The Hague

    Google Scholar 

  • Chomsky N (1959) A review of Skinner’s Verbal Behavior. Language 35:26–58

    Article  Google Scholar 

  • Chomsky N (1965) Aspects of the theory of syntax. MIT Press, Cambridge, MA

    Google Scholar 

  • Cruse H (2003) The evolution of cognition—a hypothesis. Cogn Sci 27:135–155

    Article  Google Scholar 

  • Cruse H (1999) Feeling our body—the basis of cognition?. Evol Cogn 5:162–173

    Google Scholar 

  • Feldman J, Narayanan S (2004) Embodied meaning in a neural theory of language. Brain Lang 89:385–392

    Article  PubMed  Google Scholar 

  • Fillmore C (1988) The mechanics of “Construction Grammar”. Berkeley Linguist Soc 14:35–55

    Google Scholar 

  • Fincher-Kiefer R (2001) Perceptual components of situation models. Mem Cogn 29:336–343

    CAS  Google Scholar 

  • Fisher C (1994) Structure and meaning in the verb lexicon: input from a syntasx-aided verb learning procedure. Lang Cogn Proc 9:473–518

    Google Scholar 

  • Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308:662–666

    Article  PubMed  CAS  Google Scholar 

  • Freyd JJ (1993) Five hunches about perceptual processes and dynamic representations. In: Meyer D, Kornblum S (eds) Attention and Performance XIV: Synergies in Experimental Psychology, Artificial Intelligence, and Cognitive Neuroscience. MIT Press, Cambridge, MA, pp 99–119

    Google Scholar 

  • Freyd JJ, Finke RA (1984) Representational momentum. J Exp Psychol Learn Mem Cogn 10:126–132

    Article  Google Scholar 

  • Gibson JJ (1979) The ecological approach to visual perception. Houghton Mifflin, Boston

    Google Scholar 

  • Glenberg AM, Robertson DA (1999) Indexical understanding of instructions. Discour Proc 28:1–26

    Article  Google Scholar 

  • Glenberg AM, Robertson DA (2000) Symbol grounding and meaning: a comparison of high-dimensional and embodied theories of meaning. J Mem Lang 43:379–401

    Article  Google Scholar 

  • Glenberg AM, Kaschak MP (2002) Grounding language in action. Psychol Bull Rev 9:558–565

    Google Scholar 

  • Goldberg AE (1995) A construction grammar approach to argument structure. University of Chicago Press, Chicago

    Google Scholar 

  • Hairer E, Lubich C, Wanner G (2002) Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hauk O, Johnsrude I, Pulvermuller F (2004) Somatotopic representation of action words in human motor and premotor cortex. Neuron 41:301–307

    Article  PubMed  CAS  Google Scholar 

  • Hauser MD, Chomsky N, Fitch T (2002) The faculty of language: what is it, who has it, and how did it evolve?. Science 298:1569–1579

    Article  PubMed  CAS  Google Scholar 

  • Indovina I, Maffei V, Bosco G, Zago M, Macaluso E, Lacquaniti F (2005) Representation of visual gravitational motion in the human vestibular cortex. Science 308:416–419

    Article  PubMed  CAS  Google Scholar 

  • Johnson-Laird PN (1983) Mental models: towards a cognitive science of language, inference, and consciousness. Cambridge University Press, Cambridge

    Google Scholar 

  • Kaschak MP, Glenberg AM (2000) Constructing meaning: the role of affordances and grammatical constructions in sentence comprehension. J Mem Lang 43:508–529

    Article  Google Scholar 

  • Kourtzi Z, Kanwisher N (2000) Activation in human MT/MST by static images with implied motion. J Cogn Neurosci 12: 48–55

    Article  PubMed  CAS  Google Scholar 

  • Kühn S, Cruse H (2005a) Mental representation and cognitive behaviour – a recurrent neural network approach. In: Cangelosi A, Bugmann G, Borisyuk R (eds) Modeling Language, Cognition and Action: Proceedings of the 9th workshop on neural computation and psychology. World Scientific, Singapore, pp 183–192

    Google Scholar 

  • Kühn S, Cruse H (2005b) Static mental representations in recurrent neural networks for the control of dynamic behavioural sequences. Connect Sci 17:343–360

    Article  Google Scholar 

  • Kühn S, Beyn W-J, Cruse H (2007) Modelling memory functions with recurrent neural networks consisting of input compensation units: I. Static situations. Biol Cybern (in press)

  • Lakoff G (1987) Women, fire, and dangerous things: what categories reveal about the mind. University of Chicago Press, Chicago

    Google Scholar 

  • Lisberger SG, Movshon JA (1999) Visual motion analysis for pursuit eye movements in area MT of macaque monkeys. J Neurosci 19:2224–2246

    PubMed  CAS  Google Scholar 

  • McIntyre J, Zago M, Berthoz A, Lacquaniti F (2001) Does the brain model Newton’s laws?. Nat Neurosci 4:693–694

    Article  PubMed  CAS  Google Scholar 

  • Naigles LR, Terrazas P (1998) Motion verb generalization in English and Spanish: influences in language and syntax. Psychol Sci 9:363–369

    Article  Google Scholar 

  • Nauck D, Klawonn F, Borgelt C, Kruse R (2003) Neuronale Netze und Fuzzy Systeme. Vieweg, Braunschweig/Wiesbaden

    Google Scholar 

  • Noton D, Stark L (1971) Scanpaths in saccadic eye movements while viewing and recognizing patterns. Vis Res 11:929–942

    Article  PubMed  CAS  Google Scholar 

  • Ochs E, Gonzales P, Jacoby S (1996) “When I come down I’m in the domain state”: grammar and graphic representation in the interpretative activity of physicists. In: Ochs E, Schegloff EA, Thompson SA (eds) Interaction and Grammar. Cambridge University Press, New York, pp 328–369

    Google Scholar 

  • Pinker S (1989) Learnability and Cognition: the Acquisition of Argument Structure. MIT Press, Cambridge, MA

    Google Scholar 

  • Premack D (2004) Is language the key to human intelligence?. Science 303:318–320

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192

    Article  PubMed  CAS  Google Scholar 

  • Steels L (1995) Intelligence—dynamics and representations. In: Steels L (ed) The Biology and Technology of Intelligent Autonomous Agents. Springer, Berlin Heidelberg New York, pp 72–89

    Google Scholar 

  • Steels L (2002) Simulating the evolution of a grammar for case. In: Proceedings of the 4th conference on the evolution of language, Cambridge, MA

  • Sowa JF (ed) (1991) Principles of semantic networks: explorations in the representation of knowledge. Morgan Kaufmann, San Mateo, CA

    Google Scholar 

  • Todd JT (1981) Visual information about moving objects. J Exp Psychol Hum Percept Perform 7:975–810

    PubMed  CAS  Google Scholar 

  • Tomasello M (2000) The cultural origins of human cognition. Harvard University Press, Cambridge, MA

    Google Scholar 

  • van Dijk TA, Kintsch W (1983) Strategies in text comprehension. Academic, New York

    Google Scholar 

  • von Eckardt B (1993) What is cognitive science?. MIT Press, Cambridge, MA

    Google Scholar 

  • von Eckardt B (1999) Mental representation. In: Wilson RA, Keil FC (eds) MIT encyclopedia of the cognitive sciences. MIT Press, Cambridge, MA, pp 527–529

    Google Scholar 

  • Widrow B, Hoff ME (1960) Adaptive switching circuits. In: 1960 WESCON convention record, Part IV. Institute of Radio Engineers, New York, pp 96–104

  • Wolpert DM, Doya K, Kawato M (2003) A unifying computational framework for motor control and social interaction. Philos Trans R Soc Lond B 358:593–602

    Article  Google Scholar 

  • Wolpert DM, Kawato M (1998) Multiple paired forward and inverse models for motor control. Neural Netw 11:1317–1329

    Article  PubMed  CAS  Google Scholar 

  • Zwaan RA, Madden CL, Yaxley RH, Aveyard ME (2004) Moving words: dynamic representations in language comprehension. Cogn Sci 28:611–619

    Article  Google Scholar 

  • Zwaan RA, Radvansky, Gabriel A (1998) Situation models in language comprehension and memory. Psychol Bull 123:162–185

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holk Cruse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kühn, S., Cruse, H. Modelling memory functions with recurrent neural networks consisting of input compensation units: II. Dynamic situations. Biol Cybern 96, 471–486 (2007). https://doi.org/10.1007/s00422-006-0138-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-006-0138-9

Keywords

Navigation