Skip to main content

Advertisement

Log in

Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

We model the dynamical behavior of the neuropil, the densely interconnected neural tissue in the cortex, using neuropercolation approach. Neuropercolation generalizes phase transitions modeled by percolation theory of random graphs, motivated by properties of neurons and neural populations. The generalization includes (1) a noisy component in the percolation rule, (2) a novel depression function in addition to the usual arousal function, (3) non-local interactions among nodes arranged on a multi-dimensional lattice. This paper investigates the role of non-local (axonal) connections in generating and modulating phase transitions of collective activity in the neuropil. We derived a relationship between critical values of the noise level and non-locality parameter to control the onset of phase transitions. Finally, we propose a potential interpretation of ontogenetic development of the neuropil maintaining a dynamical state at the edge of criticality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • K Aihara T Takabe M Toyoda (1990) ArticleTitleChaotic neural networks Phys Lett A 144 IssueID6–7 333–340 Occurrence Handle10.1016/0375-9601(90)90136-C

    Article  Google Scholar 

  • M Aizeman JL Lebowitz (1988) ArticleTitleMetastability effects in bootstrap percolation J Phys A 21 3801–3813

    Google Scholar 

  • R Albert AL Barabási (2002) ArticleTitleStatistical mechanics of complex networks Rev Modern Phys 74 47 Occurrence Handle10.1103/RevModPhys.74.47

    Article  Google Scholar 

  • Arhem P, Blomberg C, Liljenstrom H (2000) Disorder versus order in brain function. In: Progr neural processing, Vol. 12, ISBN 981-02- 4008-2,World Scientific, Singapore

  • P Bak (1996) How nature works - the science of self-organized criticality Springer Berlin Heidelberg, New York

    Google Scholar 

  • P Bak C Tang K Wiesenfeld (1987) Phys Rev Lett 59 381 Occurrence Handle10.1103/PhysRevLett.59.381 Occurrence Handle10035754

    Article  PubMed  Google Scholar 

  • Balister PN, Bollobás B, Stacey AM (1993) Upper bounds for the critical probability of oriented percolation in two dimensions. In: Proc Royal Soc Lond Ser A 440(1908):201–220

  • Balister P, Bollobás B, Kozma R (2004) Mean field models of probabilistic cellular automata. Random Struct Algorithms (on press)

  • Balister P, Bollobás B, Johnson R, Walters M (2003) Random majority percolation. (submitted)

  • L Barabási E Bonabeau (2003) ArticleTitleScale-free networks Sci Am 288 60–69

    Google Scholar 

  • JM Barrie WJ Freeman M Lenhart (1996) ArticleTitleModulation by discriminative training of spatial patterns of gamma EEG amplitude and phase in neocortex of rabbits J Neurophysiol 76 520–539

    Google Scholar 

  • ER Berlekamp JH Conway RK Guy (1982) Winning ways for your mathematical plays vol 1: games in general Academic New York

    Google Scholar 

  • K Binder (1981) ArticleTitleFinite scale scaling analysis of Ising model block distribution function Z Phys B 43 119–140 Occurrence Handle10.1007/BF01293604

    Article  Google Scholar 

  • B Bollobás (1985) Random Graphs Academic London

    Google Scholar 

  • B Bollobás O Riordan (2003) Results on scale-free random graphs. Handbook of graphs and networks 1–34 Wiley-VCH Weinheim

    Google Scholar 

  • SL Bressler JAS Kelso (2001) ArticleTitleCortical coordination dynamics and cognition Trends Cogn Sci 5 26–36 Occurrence Handle10.1016/S1364-6613(00)01564-3 Occurrence Handle11164733

    Article  PubMed  Google Scholar 

  • SL Bressler (2002) ArticleTitleUnderstanding cognition through large-scale cortical networks Curr Directions Psychol Sci 11 58–61 Occurrence Handle10.1111/1467-8721.00168

    Article  Google Scholar 

  • SL Bressler (2003) ArticleTitleCortical coordination dynamics and the disorganization syndrome in schizophrenia Neuropsychopharmacology 28 S35–S39

    Google Scholar 

  • R Cerf EN Cirillo (1999) ArticleTitleFinite size scaling in three-dimensional bootstrap percolation Ann Probab 27 IssueID4 1837–1850

    Google Scholar 

  • BA Cipra (1987) ArticleTitleAn introduction to the ising model Am Math Monthly 94 937–959

    Google Scholar 

  • JP Crutchfield (1994) ArticleTitleThe calculi of emergence: computation, dynamics, and induction Physica D 75 11–54

    Google Scholar 

  • MP Dafilis DTJ Liley PJ Cadusch (2001) ArticleTitleRobust chaos in a model of the electro-encephalogram: Implications for brain dynamics Chaos 11 474–478 Occurrence Handle10.1063/1.1394193 Occurrence Handle12779484

    Article  PubMed  Google Scholar 

  • AMS Duarte (1989) ArticleTitleSimulation of a cellular automaton with an oriented bootstrap rule Physica A 157 1075–1079

    Google Scholar 

  • P Erdős A Rényi (1960) ArticleTitleOn the evolution of random graphs Publ Math Inst Hung Acad Sci 5 17–61

    Google Scholar 

  • WJ Freeman (1975) Mass action in the nervous system Academic New York

    Google Scholar 

  • WJ Freeman (1999) ArticleTitleNoise-induced first-order phase transitions in chaotic brain activity Int J Bifurcation Chaos 9 IssueID11 2215–2218 Occurrence Handle10.1142/S0218127499001656

    Article  Google Scholar 

  • WJ Freeman (2003a) ArticleTitleThe wave packet: an action potential for the 21st Century J Integrative Neurosci 2 3–30

    Google Scholar 

  • WJ Freeman (2003b) ArticleTitleEvidence from human scalp EEG of global chaotic itinerancy Chaos 13 1067–1077 Occurrence Handle10.1063/1.1596553

    Article  Google Scholar 

  • WJ Freeman (2003c) ArticleTitleA neurobiological theory of meaning in perception. Part 1. Information and meaning in nonconvergent and nonlocal brain dynamics Int J Bifurc Chaos 13 2493–2511 Occurrence Handle10.1142/S0218127403008144 Occurrence HandleMR2013111

    Article  MathSciNet  Google Scholar 

  • WJ Freeman BC Burke MD Holmes (2003a) ArticleTitleAperiodic phase re-setting in scalp EEG of beta-gamma oscillations by state transitions at alpha-theta rates Hum Brain Mapp 19 248–272 Occurrence Handle10.1002/hbm.10120

    Article  Google Scholar 

  • WJ Freeman BC Burke MD Holmes S Vanhatalo (2003b) ArticleTitleSpatial spectra of scalp EEG and EMG from awake humans Clin Neurophysiol 114 1055–1060 Occurrence Handle10.1016/S1388-2457(03)00045-2

    Article  Google Scholar 

  • WJ Freeman (2004) ArticleTitleOrigin, structure, and role of background EEG activity. Part 1. Analytic amplitude Clin Neurophysiol 115 2077–2088 Occurrence Handle10.1016/j.clinph.2004.02.029 Occurrence Handle15294210

    Article  PubMed  Google Scholar 

  • KJ Friston (2000) ArticleTitleThe labile brain I. Neuronal transients and nonlinear coupling Phil Trans R Soc Lond B 355 215–236 Occurrence Handle10.1098/rstb.2000.0560 Occurrence Handle1:STN:280:DC%2BD3c7oslSmsA%3D%3D

    Article  CAS  Google Scholar 

  • AJ Gruber SA Solla DJ Surmeier JC Houk (2003) ArticleTitleModulation of striatal single units by expected reward: A spiny neuron model displaying dopamine-induced bistability J Neurophysiol 90 1095–1114 Occurrence Handle12649314

    PubMed  Google Scholar 

  • H Haken (1999) What can synergetics contribute to the understanding of brain functioning? C Uhl (Eds) Analysis of neurophysiological brain functioning Springer Berlin Heidelberg, New York 7–40

    Google Scholar 

  • P Gács (1990) ArticleTitleA Toom rule that increases the thickness of sets J Statist Phys 59 IssueID1–2 171–193 Occurrence Handle10.1007/BF01015567

    Article  Google Scholar 

  • J Gravener E McDonald (1997) ArticleTitleBootstrap percolation in a polluted environment J Statist Phys 87 IssueID3–4 915–927

    Google Scholar 

  • G Grimmett (1999) Percolation in fundamental principles of mathematical sciences Springer Berlin Heidelberg, New York xiv+444

    Google Scholar 

  • JJ Hopfield (1982) ArticleTitleNeural networks and physical systems with emergent collective computational abilities Proc Nat Acad Sci USA 79 2554–2558 Occurrence Handle1:STN:280:Bi2B383hslM%3D Occurrence Handle6953413

    CAS  PubMed  Google Scholar 

  • FC Hoppensteadt EM Izhikevich (1998) ArticleTitleThalamo-cortical interactions modeled by weakly connected oscillators: could the brain use FM radio principles? BioSystems 48 85–94 Occurrence Handle10.1016/S0303-2647(98)00053-7 Occurrence Handle1:STN:280:DyaK1M7gtFOhtA%3D%3D Occurrence Handle9886635

    Article  CAS  PubMed  Google Scholar 

  • L Ingber (1995) Statistical mechanics of multiple scales of neocortical interactions PL Nunez (Eds) Neocortical dynamics and human EEG rhythms Oxford New York 628–681

    Google Scholar 

  • HJ Jensen (1998) Self-organized criticality – emergent behavior in physical and biological systems Cambridge University Press Cambridge

    Google Scholar 

  • K Kaneko (1990) ArticleTitleClustering, coding, switching, hierarchical ordering, and control in a network of chaotic elements Physica D 41 137–172

    Google Scholar 

  • Kaneko K, Tsuda I (2001) Complex systems: chaos and beyond. A constructive approach with applications in life sciences.

  • SA Kauffman (1990) ArticleTitleRequirements for evolvability in complex systems: orderly dynamics and frozen components Physica D 42 135–152

    Google Scholar 

  • H Korn P Faure (2003) ArticleTitleIs there chaos in the brain? II. Experimental evidence and related models Comptes Rendus Biologies 326 787–840 Occurrence Handle10.1016/j.crvi.2003.09.011 Occurrence Handle14694754

    Article  PubMed  Google Scholar 

  • R Kozma (1998) ArticleTitleIntermediate-range coupling generates low-dimensional attractors deeply in the chaotic region of one-dimensional lattices Phys Lett A 244 IssueID1–3 85–91 Occurrence Handle10.1016/S0375-9601(98)00275-8 Occurrence Handle1:CAS:528:DyaK1cXjsFOgtbY%3D

    Article  CAS  Google Scholar 

  • R Kozma WJ Freeman (2001) ArticleTitleChaotic resonance – methods and applications for robust classification of noisy and variable patterns Int J Bifurcation Chaos 11 1607–1629 Occurrence Handle10.1142/S0218127401002870

    Article  Google Scholar 

  • Kozma R, Balister P, Bollobás B, Freeman WJ (2001) Dynamical percolation models of phase transitions in the cortex In: Proceedings NOLTA 01 nonlinear theory and applications symposium, Miyagi, Japan, vol. 1, pp 55–59

  • Kozma R, Balister P, Bollobás B, Chen H, Freeman WJ (2003) Analysis of scaling laws in a local random cellular automata model (submitted)

  • R Kozma M Puljic P Balister B Bollobás WJ Freeman (2004) Neuropercolation: a random cellular automata approach to spatio-temporal neurodynamics. Lecture Notes Computer Science LNCS vol 3350 Springer Berlin Heidelberg, New York 435–443

    Google Scholar 

  • K Linkenkaer-Hansen VM Nikouline JM Palva RJ Iimoniemi (2001) ArticleTitleLong-range temporal correlations and scaling behavior in human brain oscillations J Neurosci 15 1370–1377

    Google Scholar 

  • C Maes Velde K Vande (1997) ArticleTitleRelative energies for non-Gibbsian states Comm Math Phys 189 IssueID2 277–286 Occurrence Handle10.1007/s002200050201

    Article  Google Scholar 

  • D Makowiec (1999) ArticleTitleStationary states for Toom cellular automata in simulations Phys Rev E 55 3795

    Google Scholar 

  • P Marcq H Chaté P Manneville (1997) ArticleTitleUniversality in Ising-like phase transitions of lattices of coupled chaotic maps Phys Rev E 55 IssueID3 2606–2627 Occurrence Handle10.1103/PhysRevE.55.2606 Occurrence Handle1:CAS:528:DyaK2sXitVGlur4%3D

    Article  CAS  Google Scholar 

  • MEJ Newman (2000) ArticleTitleModels of the small world J Stat Phys 101 819–841 Occurrence Handle10.1023/A:1026485807148

    Article  Google Scholar 

  • FW Ohl H Scheich WJ Freeman (2001) ArticleTitleChange in pattern of ongoing cortical activity with auditory category learning Nature 412 733–736 Occurrence Handle10.1038/35089076 Occurrence Handle1:STN:280:DC%2BD3Mvmt1GrsA%3D%3D Occurrence Handle11507640

    Article  CAS  PubMed  Google Scholar 

  • FW Ohl M Deliano H Scheich WJ Freeman (2003) ArticleTitleEarly and late patterns of stimulus-related activity in auditory cortex of trained animals Biol Cybern 88 374–379 Occurrence Handle10.1007/s00422-002-0389-z Occurrence Handle1:STN:280:DC%2BD3s3ivVersQ%3D%3D Occurrence Handle12750899

    Article  CAS  PubMed  Google Scholar 

  • A Peters SL Palay H deF (1991) Webster fine structure of the nervous system: neurons and their supporting cells Oxford University Press Oxford

    Google Scholar 

  • Y Pomeau (1993) ArticleTitlePeriodic behavior in cellular automata J Stat Phys 70 IssueID5–6 1379–1382 Occurrence Handle10.1007/BF01049439

    Article  Google Scholar 

  • Puljic M, Kozma R, (2003) Phase transitions in a probabilistic cellular neural network model having local and remote connections. IEEE/INNS International Joint Conference Neural Network IJCNN’2003, pp 831–835

  • Puljic M, Kozma R (2005) Activation clustering in neural and social networks. Complexity (in press)

  • SJ Schiff et al. (1994) ArticleTitleControlling chaos in the brain Nature 370 615–620

    Google Scholar 

  • CA Skarda WJ Freeman (1987) ArticleTitleHow brains make chaos in order to make sense of the world Behav Brain Sci 10 161–195

    Google Scholar 

  • CJ Stam M Breakspear van Walsum A-M Cappellen Particlevan BW Dijk Particlevan (2003) ArticleTitleNonlinear synchronization in EEG and whole-head recordings of healthy subjects Hum Brain Mapp 19 63–78 Occurrence Handle10.1002/hbm.10106 Occurrence Handle12768531

    Article  PubMed  Google Scholar 

  • D Stauffer A Aharony (1994) Introduction to percolation theory Selwood Printing Ltd West Sussex

    Google Scholar 

  • AL Toom NB Vasilyev ON Stavskaya LG Mityushin GL Kurdyumov SA Prigorov (1990) Discrete local Markov systems in Stochastic cellular systems:ergodicity, memory, morphogenesis RL Dobrushin VI Kryukov AL Toom (Eds) Nonlinear Science: theory and applications Manchester University Press UK

    Google Scholar 

  • XF Wang GR Chen (2003) ArticleTitleComplex networks: small-world, scale-free and beyond IEEE Trans Circuits Syst 31 6–20 Occurrence Handle1:CAS:528:DC%2BD2cXlsVChtrg%3D

    CAS  Google Scholar 

  • DJ Watts SH Strogatz (1998) ArticleTitleCollective dynamics of small-world networks Nature 393 440–442 Occurrence Handle10.1038/30918 Occurrence Handle1:CAS:528:DyaK1cXjs1Khsrk%3D Occurrence Handle9623998

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kozma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozma, R., Puljic, M., Balister, P. et al. Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions. Biol Cybern 92, 367–379 (2005). https://doi.org/10.1007/s00422-005-0565-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-005-0565-z

Keywords

Navigation