Skip to main content
Log in

Estimating position and velocity of a submerged moving object by the clawed frog Xenopus and by fish—A cybernetic approach

  • Letter to the Editor
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The lateral-line system is a unique facility of aquatic animals to locate predator, prey, or conspecifics. We present a detailed model of how the clawed frog Xenopus, or fish, can localize submerged moving objects in three dimensions by using their lateral-line system. In so doing we develop two models of a slightly different nature. First, we exploit the characteristic properties of the velocity field, such as zeros and maxima or minima, that a moving object generates at the lateral-line organs and that are directly accessible neuronally, in the context of a simplified geometry. In addition, we show that the associated neuronal model is robust with respect to noise. Though we focus on the superficial neuromasts of Xenopus the same arguments apply mutatis mutandis to the canal lateral-line system of fish. Second, we present a full-blown three-dimensional reconstruction of the source on the basis of a maximum likelihood argument.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bleckmann H. (1994). Reception of Hydrodynamic Stimuli in Aquatic and Semiaquatic Animals. Fischer, Stuttgart

    Google Scholar 

  • Braess D. (2003). Finite Elemente. 3. Aufl. Springer, Berlin

    Google Scholar 

  • Claas B., Münz H. (1996). Analysis of surface wave direction by the lateral line system of Xenopus: Source localization before and after inactivation of different parts of the lateral line. J Comp Physiol 178(2):253–268

    Article  CAS  Google Scholar 

  • Coombs S. (1999). Signal detection theory, lateral-line excitation patterns and prey capture behaviour of mottled sculpin. Animal Behavior 58:421–430

    Article  Google Scholar 

  • Coombs S., Conley RA. (1997). Dipole source localization by mottled sculpin: I. Approach strategies. J Comp Physiol 180(4):387–399

    Article  CAS  Google Scholar 

  • Coombs S., Fay RR. (1993). Source level discrimination by the lateral line system of the mottled sculpin, Cottus bairdi. J Acoust Soc Am 93(4):2116–2123

    Article  PubMed  CAS  Google Scholar 

  • Coombs S., Finneran JJ., Conley RA. (2000). Hydrodynamic image formation by the peripheral lateral line system of the Lake Michigan mottled sculpin, Cottus bairdi. Phil Trans R Soc Lond B 355(1401):1111–1114

    Article  CAS  Google Scholar 

  • Coombs S., Mogdans J., Halstead M., Montgomery J. (1998). Transformation of peripheral inputs by the first-order lateral line brainstem nucleus. J Comp Physiol A 182:609–626

    Article  Google Scholar 

  • Denton EJ., Gray JAB. (1989). Some observations on the forces acting on neuromasts in fish lateral line canals. In: Coombs S., Görner P., Münz H (eds). The Mechanosensory Lateral Line: Neurobiology and Evolution. Springer, New York, pp. 229–246

    Google Scholar 

  • Elepfandt A. (1984). The role of ventral lateral line organs in water wave localization in the clawed toad (Xenopus laevis). J Comp Physiol A 154:773–780

    Article  Google Scholar 

  • Elepfandt A. (1996). Sensory perception and the lateral line system in the clawed frog, Xenopus. In: Tinsley RC., Kobel HR (eds). The Biology of Xenopus chap 7. Clarendon Press, Oxford, pp. 97–120

    Google Scholar 

  • Engelmann J., Kröther S., Bleckmann H., Mogdans J. (2003). Effects of running water on lateral line responses to moving objects. Brain Behav Evol 61:195–212

    Article  PubMed  Google Scholar 

  • Franosch JMP., Lingenheil M., van Hemmen JL. (2005). How a frog can learn what is where in the dark. Phys Rev Lett 95:078106–1/4

    Article  PubMed  Google Scholar 

  • Franosch JMP., Sobotka MC., Elepfandt A., van Hemmen JL. (2003). Minimal model of prey localization through the lateral-line system. Phys Rev Lett 91:158101–1/4

    Article  PubMed  Google Scholar 

  • Griebel M., Dornseifer T., Neunhoeffer T. (1995). Numerische Simulation in der Strömungsmechanik: eine praxisorientierte Einführung. Vieweg, Braunschweig

    Google Scholar 

  • Görner P. (1963). Untersuchungen zur Morphologie und Elektrophysiologie des Seitenlinienorgans vom Krallenfrosch (Xenopus laevis Daudin). Z vergl Physiol 47:316–338

    Article  Google Scholar 

  • Görner P., Mohr C. (1989). Stimulus localization in Xenopus: Role of directional sensitivity of lateral line stitches. In: Coombs S., Görner P., Münz H (eds). The Mechanosensory Lateral Line: Neurobiology and Evolution. Springer, New York, pp. 543–560

    Google Scholar 

  • Hackbusch W. (1986). Theorie und Numerik elliptischer Differentialgleichungen. Teubner

  • Hassan ES. (1985). Mathematical analysis of the stimulus for the lateral line organ. Biol Cybern 52(1):23–36

    Article  PubMed  CAS  Google Scholar 

  • Hofmann MH., Falk M., Wilkens LA. (2004). Electrosensory brain stem neurons compute the time derivative of electric fields in the paddlefish. Fluct Noise Lett 4:L129–L138

    Article  Google Scholar 

  • Kalmijn AJ. (1988). Hydrodynamic and acoustic field detection. In: Atema J., Fay RR., Popper AN., Tavolga WN (eds). Sensory Biology of Aquatic Animals. Springer, New York, pp. 83–130

    Google Scholar 

  • Kalmijn AJ. (1989). Functional evolution of lateral line and inner ear sensory systems. In: Coombs S., Görner P., Münz H (eds). The Mechanosensory Lateral Line: Neurobiology and Evolution. Springer, New York, pp. 187–215

    Google Scholar 

  • Kramer G. (1933). Untersuchungen über die Sinnesleistungen und das Orientierungsverhalten von Xenopus laevis Daud. Zool Jb Physiol 52:629–676

    Google Scholar 

  • Lamb H. (1932). Hydrodynamics. Cambridge University Press, Cambridge, 6th edn. §§226ff, 246, 331, 332

  • Marsal D. (1989). Finite Differenzen und Elemente - Numerische Lösung von Variatonsproblemen und partielle Differentialgleichungen. Springer, Berlin

    Google Scholar 

  • Press WH., Teukolsky SA., Vetterling WT., Flannery BP. (1995). Numerical Recipes in C. Cambridge University Press

  • Roache PJ. (1972). Computational fluid dynamics. Hermosa Publishers, Albuquerque

    Google Scholar 

  • Russell IJ. (1976). Amphibian lateral line receptors. In: Llinas R., Precht W (eds). Frog Neurobiology: A Handbook. Springer, Berlin, pp. 513–550

    Google Scholar 

  • Strelioff D., Honrubia V. (1978). Neural transduction in Xenopus laevis lateral line system. J Neurophysiol 41(2):432–444

    PubMed  CAS  Google Scholar 

  • Tinsley RC., Kobel HR (eds). (1996). The Biology of Xenopus. Clarendon Press, Oxford

    Google Scholar 

  • van der Waerden BL. (1969). Mathematical Statistics. Springer, Berlin

    Google Scholar 

  • Varga RS. (1999). Matrix Iterative Analysis. Springer Series in Computational Mathematics. Springer, 2nd edn

  • Vogel D., Bleckmann H. (2001). Behavioral discrimination of water motions caused by moving objects. J Comp Physiol A 186:1107–1117

    Article  CAS  Google Scholar 

  • Young DM. (1971). Iterative Solution of Large Linear Systems - Computer Science and Applied Mathematics. Academic Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Moritz P. Franosch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franosch, JM.P., Sichert, A.B., Suttner, M.D. et al. Estimating position and velocity of a submerged moving object by the clawed frog Xenopus and by fish—A cybernetic approach. Biol Cybern 93, 231–238 (2005). https://doi.org/10.1007/s00422-005-0005-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-005-0005-0

Keywords

Navigation