Skip to main content
Log in

Relating QRS voltages to left ventricular mass and body composition in elite endurance athletes

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

Electrocardiogram (ECG) QRS voltages correlate poorly with left ventricular mass (LVM). Body composition explains some of the QRS voltage variability. The relation between QRS voltages, LVM and body composition in endurance athletes is unknown.

Methods

Elite endurance athletes from the Pro@Heart trial were evaluated with 12-lead ECG for Cornell and Sokolow-Lyon voltage and product. Cardiac magnetic resonance imaging assessed LVM. Dual energy x-ray absorptiometry assessed fat mass (FM) and lean mass of the trunk and whole body (LBM). The determinants of QRS voltages and LVM were identified by multivariable linear regression. Models combining ECG, demographics, DEXA and exercise capacity to predict LVM were developed.

Results

In 122 athletes (19 years, 71.3% male) LVM was a determinant of the Sokolow-Lyon voltage and product (β = 0.334 and 0.477, p < 0.001) but not of the Cornell criteria. FM of the trunk (β = − 0.186 and − 0.180, p < 0.05) negatively influenced the Cornell voltage and product but not the Sokolow-Lyon criteria. DEXA marginally improved the prediction of LVM by ECG (r = 0.773 vs 0.510, p < 0.001; RMSE = 18.9 ± 13.8 vs 25.5 ± 18.7 g, p > 0.05) with LBM as the strongest predictor (β = 0.664, p < 0.001). DEXA did not improve the prediction of LVM by ECG and demographics combined and LVM was best predicted by including VO2max (r = 0.845, RMSE = 15.9 ± 11.6 g).

Conclusion

LVM correlates poorly with QRS voltages with adipose tissue as a minor determinant in elite endurance athletes. LBM is the strongest single predictor of LVM but only marginally improves LVM prediction beyond ECG variables. In endurance athletes, LVM is best predicted by combining ECG, demographics and VO2max.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abergel E, Tase M, Menard J, Chatellier G (1996) Influence of obesity on the diagnostic value of electrocardiographic criteria for detecting left ventricular hypertrophy. Am J Cardiol 77:739–744

    Article  CAS  PubMed  Google Scholar 

  • Angeli F, Verdecchia P, Iacobellis G, Reboldi G (2014) Usefulness of QRS voltage correction by body mass index to improve electrocardiographic detection of left ventricular hypertrophy in patients with systemic hypertension. Am J Cardiol 114:427–432

    Article  PubMed  Google Scholar 

  • Bang CN, Devereux RB, Okin PM (2014) Regression of electrocardiographic left ventricular hypertrophy or strain is associated with lower incidence of cardiovascular morbidity and mortality in hypertensive patients independent of blood pressure reduction—a LIFE review. J Electrocardiol 47:630–635

    Article  PubMed  Google Scholar 

  • Bella JN, Devereux RB, Roman MJ, O’Grady MJ, Welty TK, Lee ET, Fabsitz RR, Howard BV (1998) ’Relations of left ventricular mass to fat-free and adipose body mass: the strong heart study. The Strong Heart Study Investigators. Circulation 98:2538–2544

    Article  CAS  PubMed  Google Scholar 

  • Bosscher D, Ruben CD, Janssens K, Bogaert J, Elliott A, Ghekiere O, Van De Heyning CM, Sanders P, Kalman J, Fatkin D, Herbots L, Willems R, Heidbuchel H, La Gerche A, Claessen G (2022) Rationale and design of the PROspective ATHletic Heart (Pro@Heart) study: long-term assessment of the determinants of cardiac remodelling and its clinical consequences in endurance athletes. BMJ Open Sport Exerc Med 8:e001309

    Article  PubMed  PubMed Central  Google Scholar 

  • Brosnan MJ, Claessen G, Heidbuchel H, Prior DL, La Gerche A (2015) Right precordial T-wave inversion in healthy endurance athletes can be explained by lateral displacement of the cardiac apex. JACC Clin Electrophysiol 1:84–91

    Article  PubMed  Google Scholar 

  • Cain PA, Ahl R, Hedstrom E, Ugander M, Allansdotter-Johnsson A, Friberg P, Marild S, Arheden H (2007) Physiological determinants of the variation in left ventricular mass from early adolescence to late adulthood in healthy subjects. Clin Physiol Funct Imaging 27:255–262

    Article  PubMed  Google Scholar 

  • Csecs I, Czimbalmos C, Toth A, Dohy Z, Suhai IF, Szabo L, Kovacs A, Lakatos B, Sydo N, Kheirkhahan M, Peritz D, Kiss O, Merkely B, Vago H (2020) The impact of sex, age and training on biventricular cardiac adaptation in healthy adult and adolescent athletes: Cardiac magnetic resonance imaging study. Eur J Prev Cardiol 27:540–549

    Article  PubMed  Google Scholar 

  • Cuspidi C, Facchetti R, Bombelli M, Sala C, Tadic M, Grassi G, Mancia G (2016) Does QRS voltage correction by body mass index improve the accuracy of electrocardiography in detecting left ventricular hypertrophy and predicting cardiovascular events in a general population? J Clin Hypertens (greenwich) 18:415–421

    Article  PubMed  Google Scholar 

  • Czosek RJ, Cnota JF, Knilans TK, Pratt J, Guerrier K, Anderson JB (2014) Relationship between echocardiographic LV mass and ECG based left ventricular voltages in an adolescent population: related or random? Pacing Clin Electrophysiol 37:1133–1140

    Article  PubMed  Google Scholar 

  • da Costa W, Riera AR, Costa Fde A, Bombig MT, de Paola AA, Carvalho AC, Fonseca FH, Luna Filho B, Povoa R (2008) Correlation of electrocardiographic left ventricular hypertrophy criteria with left ventricular mass by echocardiogram in obese hypertensive patients. J Electrocardiol 41:724–729

    Article  PubMed  Google Scholar 

  • Danielian A, Shah AB (2022) Differentiating physiology from pathology: the gray zones of the athlete’s heart. Clin Sports Med 41:425–440

    Article  PubMed  Google Scholar 

  • D’Ascenzi F, Pelliccia A, Cameli M, Lisi M, Natali BM, Focardi M, Giorgi A, D’Urbano G, Causarano A, Bonifazi M, Mondillo S (2015) Dynamic changes in left ventricular mass and in fat-free mass in top-level athletes during the competitive season. Eur J Prev Cardiol 22:127–134

    Article  PubMed  Google Scholar 

  • Desjardins B, Morady F, Bogun F (2010) Effect of epicardial fat on electroanatomical mapping and epicardial catheter ablation. J Am Coll Cardiol 56:1320–1327

    Article  PubMed  Google Scholar 

  • Finocchiaro G, Papadakis M, Robertus JL, Dhutia H, Steriotis AK, Tome M, Mellor G, Merghani A, Malhotra A, Behr E, Sharma S, Sheppard MN (2016) Etiology of sudden death in sports: insights from a United Kingdom Regional Registry. J Am Coll Cardiol 67:2108–2115

    Article  PubMed  Google Scholar 

  • Foster BJ, Khoury PR, Kimball TR, Mackie AS, Mitsnefes M (2016) New reference centiles for left ventricular mass relative to lean body mass in children. J Am Soc Echocardiogr 29(441–47):e2

    Google Scholar 

  • Gallagher D, Visser M, Wang Z, Harris T, Pierson RN Jr, Heymsfield SB (1996) Metabolically active component of fat-free body mass: influences of age, adiposity, and gender. Metabolism 45:992–997

    Article  CAS  PubMed  Google Scholar 

  • George KP, Birch KM, Pennell DJ, Myerson SG (2009) Magnetic-resonance-imaging-derived indices for the normalization of left ventricular morphology by body size. Magn Reson Imaging 27:207–213

    Article  PubMed  Google Scholar 

  • Hedman K, Moneghetti KJ, Hsu D, Christle JW, Patti A, Ashley E, Hadley D, Haddad F, Froelicher V (2020) Limitations of electrocardiography for detecting left ventricular hypertrophy or concentric remodeling in athletes. Am J Med 133(123–32):e8

    Google Scholar 

  • Horton JD, Sherber HS, Lakatta EG (1977) Distance correction for precordial electrocardiographic voltage in estimating left ventricular mass: an echocardiographic study. Circulation 55:509–512

    Article  CAS  PubMed  Google Scholar 

  • Inoue YY, Ambale-Venkatesh B, Mewton N, Volpe GJ, Ohyama Y, Sharma RK, Wu CO, Liu CY, Bluemke DA, Soliman EZ, Lima JA, Ashikaga H (2017) Electrocardiographic impact of myocardial diffuse fibrosis and scar: MESA (Multi-Ethnic Study of Atherosclerosis). Radiology 282:690–698

    Article  PubMed  Google Scholar 

  • Kawel-Boehm N, Hetzel SJ, Ambale-Venkatesh B, Captur G, Francois CJ, Jerosch-Herold M, Salerno M, Teague SD, Valsangiacomo-Buechel E, van der Geest RJ, Bluemke DA (2020) Reference ranges (“normal values”) for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update. J Cardiovasc Magn Reson 22:87

    Article  PubMed  PubMed Central  Google Scholar 

  • Konno T, Nagata Y, Teramoto R, Fujino N, Nomura A, Tada H, Sakata K, Furusho H, Takamura M, Nakamura H, Kawashiri MA, Yamagishi M, Hayashi K (2016) Usefulness of electrocardiographic voltage to determine myocardial fibrosis in hypertrophic cardiomyopathy. Am J Cardiol 117:443–449

    Article  PubMed  Google Scholar 

  • La Gerche A, Burns AT, Mooney DJ, Inder WJ, Taylor AJ, Bogaert J, Macisaac AI, Heidbuchel H, Prior DL (2012a) Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J 33:998–1006

    Article  PubMed  Google Scholar 

  • La Gerche A, Burns AT, Taylor AJ, Macisaac AI, Heidbuchel H, Prior DL (2012b) Maximal oxygen consumption is best predicted by measures of cardiac size rather than function in healthy adults. Eur J Appl Physiol 112:2139–2147

    Article  PubMed  Google Scholar 

  • La Gerche A, Claessen G, Van de Bruaene A, Pattyn N, Van Cleemput J, Gewillig M, Bogaert J, Dymarkowski S, Claus P, Heidbuchel H (2013) Cardiac MRI: a new gold standard for ventricular volume quantification during high-intensity exercise. Circ Cardiovasc Imaging 6:329–338

    Article  PubMed  Google Scholar 

  • Levy D, Labib SB, Anderson KM, Christiansen JC, Kannel WB, Castelli WP (1990) Determinants of sensitivity and specificity of electrocardiographic criteria for left ventricular hypertrophy. Circulation 81:815–820

    Article  CAS  PubMed  Google Scholar 

  • Levy D, Salomon M, D’Agostino RB, Belanger AJ, Kannel WB (1994) Prognostic implications of baseline electrocardiographic features and their serial changes in subjects with left ventricular hypertrophy. Circulation 90:1786–1793

    Article  CAS  PubMed  Google Scholar 

  • Maanja M, Wieslander B, Schlegel TT, Bacharova L, Abu Daya H, Fridman Y, Wong TC, Schelbert EB, Ugander M (2017) Diffuse myocardial fibrosis reduces electrocardiographic voltage measures of left ventricular hypertrophy independent of left ventricular mass. J Am Heart Assoc 6

  • Maron BJ, Pelliccia A, Spirito P (1995) “Cardiac disease in young trained athletes Insights into Methods for Distinguishing Athlete’s Heart from Structural Heart Disease, with Particular Emphasis on Hypertrophic Cardiomyopathy.” Circulation 91:1596–1601

    Article  CAS  PubMed  Google Scholar 

  • Maunganidze F, Woodiwiss AJ, Libhaber CD, Maseko MJ, Majane OH, Norton GR (2013) Obesity markedly attenuates the validity and performance of all electrocardiographic criteria for left ventricular hypertrophy detection in a group of black African ancestry. J Hypertens 31:377–383

    Article  CAS  PubMed  Google Scholar 

  • Merghani A, Maestrini V, Rosmini S, Cox AT, Dhutia H, Bastiaenan R, David S, Yeo TJ, Narain R, Malhotra A, Papadakis M, Wilson MG, Tome M, AlFakih K, Moon JC, Sharma S (2017) Prevalence of subclinical coronary artery disease in masters endurance athletes with a low atherosclerotic risk profile. Circulation 136:126–137

    Article  CAS  PubMed  Google Scholar 

  • Mohlenkamp S, Lehmann N, Breuckmann F, Brocker-Preuss M, Nassenstein K, Halle M, Budde T, Mann K, Barkhausen J, Heusch G, Jockel KH, Erbel R (2008) Running: the risk of coronary events : Prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur Heart J 29:1903–1910

    Article  PubMed  Google Scholar 

  • Myerson SG, Bellenger NG, Pennell DJ (2002) Assessment of left ventricular mass by cardiovascular magnetic resonance. Hypertension 39:750–755

    Article  CAS  PubMed  Google Scholar 

  • Nomsawadi V, Krittayaphong R (2019) Diagnostic performance of electrocardiographic criteria for left ventricular hypertrophy among various body mass index groups compared to diagnosis by cardiac magnetic resonance imaging. Ann Noninvasive Electrocardiol 24:e12635

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson C, Woodiwiss AJ, Libhaber CD, Norton GR (2016) Novel approach to the detection of left ventricular hypertrophy using body mass index-corrected electrocardiographic voltage criteria in a group of African ancestry. Clin Cardiol 39:524–530

    Article  PubMed  PubMed Central  Google Scholar 

  • Saba MM, Akella J, Gammie J, Poston R, Johnson A, Hood RE, Dickfeld TM, Shorofsky SR (2009) The influence of fat thickness on the human epicardial bipolar electrogram characteristics: measurements on patients undergoing open-heart surgery. Europace 11:949–953

    Article  PubMed  Google Scholar 

  • Sharma S, Whyte G, Elliott P, Padula M, Kaushal R, Mahon N, McKenna WJ (1999) Electrocardiographic changes in 1000 highly trained junior elite athletes. Br J Sports Med 33:319–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma S, Maron BJ, Whyte G, Firoozi S, Elliott PM, McKenna WJ (2002) Physiologic limits of left ventricular hypertrophy in elite junior athletes: relevance to differential diagnosis of athlete’s heart and hypertrophic cardiomyopathy. J Am Coll Cardiol 40:1431–1436

    Article  PubMed  Google Scholar 

  • Sharma S, Drezner JA, Baggish A, Papadakis M, Wilson MG, Prutkin JM, La Gerche A, Ackerman MJ, Borjesson M, Salerno JC, Asif IM, Owens DS, Chung EH, Emery MS, Froelicher VF, Heidbuchel H, Adamuz C, Asplund CA, Cohen G, Harmon KG, Marek JC, Molossi S, Niebauer J, Pelto HF, Perez MV, Riding NR, Saarel T, Schmied CM, Shipon DM, Stein R, Vetter VL, Pelliccia A, Corrado D (2018) International recommendations for electrocardiographic interpretation in athletes. Eur Heart J 39:1466

    Article  PubMed  Google Scholar 

  • Spears DA, Suszko AM, Dalvi R, Crean AM, Ivanov J, Nanthakumar K, Downar E, Chauhan VS (2012) Relationship of bipolar and unipolar electrogram voltage to scar transmurality and composition derived by magnetic resonance imaging in patients with nonischemic cardiomyopathy undergoing VT ablation. Heart Rhythm 9:1837–1846

    Article  PubMed  Google Scholar 

  • Toyama J, Okada A, Nagata Y, Okajima M, Yamada K (1974) Electrocardiographic changes in pulmonary emphysema: effects of experimentally induced over-inflation of the lungs on QRS complexes. Am Heart J 87:606–613

    Article  CAS  PubMed  Google Scholar 

  • Whalley GA, Gamble GD, Doughty RN, Culpan A, Plank L, MacMahon S, Sharpe N (1999) Left ventricular mass correlates with fat-free mass but not fat mass in adults. J Hypertens 17:569–574

    Article  CAS  PubMed  Google Scholar 

  • Whalley GA, Doughty RN, Gamble GD, Oxenham HC, Walsh HJ, Reid IR, Baldi JC (2004) Association of fat-free mass and training status with left ventricular size and mass in endurance-trained athletes. J Am Coll Cardiol 44:892–896

    Article  PubMed  Google Scholar 

  • Wilson M, O’Hanlon R, Prasad S, Deighan A, Macmillan P, Oxborough D, Godfrey R, Smith G, Maceira A, Sharma S, George K, Whyte G (2011) Diverse patterns of myocardial fibrosis in lifelong, veteran endurance athletes. J Appl Physiol 1985(110):1622–1626

    Article  Google Scholar 

  • Zorzi A, Perazzolo Marra M, Rigato I, De Lazzari M, Susana A, Niero A, Pilichou K, Migliore F, Rizzo S, Giorgi B, De Conti G, Sarto P, Serratosa L, Patrizi G, De Maria E, Pelliccia A, Basso C, Schiavon M, Bauce B, Iliceto S, Thiene G, Corrado D (2016) Nonischemic left ventricular scar as a substrate of life-threatening ventricular arrhythmias and sudden cardiac death in competitive athletes. Circ Arrhythm Electrophysiol 9

Download references

Acknowledgements

The authors would like to thank the many staff members at all sites for helping conduct this study. We would particularly like to thank the clinical research assistants Sofie van Soest, Dorien Vermeulen and Daisy Thijs for their dedication and devoted efforts for the inclusion, testing and follow-up of participants.

The members of the Pro@Heart Consortium: Sofie Van Soest (Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Cardiology, University Hospitals Leuven, Leuven, Belgium), Peter Hespel (Department of Movement Sciences, KU Leuven, Leuven, Belgium), Steven Dymarkowski (Radiology, University Hospitals Leuven, Leuven, Belgium), Tom Dresselaers (Radiology, University Hospitals Leuven, Leuven, Belgium), Hielko Miljoen (Cardiovascular Research, GENCOR, University of Antwerp, Antwerp, Belgium; Cardiology, University Hospital Antwerp, Antwerp, Belgium), Kasper Favere (Cardiovascular Research, GENCOR, University of Antwerp, Antwerp, Belgium; Cardiology, University Hospital Antwerp, Antwerp, Belgium), Dorien Vermeulen (Cardiovascular Research, GENCOR, University of Antwerp, Antwerp, Belgium; Cardiology, University Hospital Antwerp, Antwerp, Belgium), Isabel Witvrouwen(Cardiovascular Research, GENCOR, University of Antwerp, Antwerp, Belgium; Cardiology, University Hospital Antwerp, Antwerp, Belgium), Dominique Hansen (Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia; Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia), Daisy Thijs (Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia), Peter Vanvoorden (Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia), Olivier Ghekiere (Department of Radiology, Jessa Ziekenhuis, Hasselt, Belgium; Faculty of Medicine and Life Sciences, Cardiology and Organ systems, Hasselt University, Diepenbeek, Belgium), Lieven Herbots (Department of Cardiology, Hartcentrum, Jessa Ziekenhuis, Hasselt, Belgium; Faculty of Medicine and Life Sciences, Cardiology and Organ systems, Hasselt University, Diepenbeek, Belgium), Kristof Lefebvre (Department of Cardiology, Algemeen Ziekenhuis Nikolaas, Sint-Niklaas, Belgium), Michael Darragh Flannery (Cardiology, Baker Heart and Diabetes Institute, Melbourne, Australia), Amy Mitchell (Cardiology, Baker Heart and Diabetes Institute, Melbourne, Australia), Maria Brosnan (Cardiology, Baker Heart and Diabetes Institute, Melbourne, Australia), David Prior (Cardiology, Baker Heart and Diabetes Institute, Melbourne, Australia), Adrian Elliott (Centre for Heart Rhythm Disorders, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia), Diane Fatkin (Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia).

Funding

The National Health and Medical Research Council of Australia (APP1130353). JM, CV and SVH received funding from the Flemish Government (AI Research Program). CV also received funding from the European Space Agency, Belspo (Prodex-NEPTUNE).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

All authors contributed to the acquisition of data. RDB, GC and RW drafted the manuscript. All authors read, gave final approval and agreed to be accountable for all aspects of the work, ensuring integrity.

Corresponding author

Correspondence to Ruben De Bosscher.

Ethics declarations

Conflict of interest

RW reports research funding from Abbott, Biotronik, Boston Scientific, Medtronic; speakers and consultancy fees from Medtronic, Boston Scientific, Biotronik, Abbott. RW is supported as postdoctoral clinical researcher by the Fund for Scientific Research Flanders. RDB none, CD none, MC none, KJ none, PC none, KG none, JB none, CVDH none, BP none, PS none, JK none, ALG none, HH none and GC none.

Additional information

Communicated by Ellen Adele Dawson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The members of the the Pro@Heart consortium are listed in Acknowledgements section.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 70 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Bosscher, R., Moeyersons, J., Dausin, C. et al. Relating QRS voltages to left ventricular mass and body composition in elite endurance athletes. Eur J Appl Physiol 123, 547–559 (2023). https://doi.org/10.1007/s00421-022-05080-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-022-05080-5

Keywords

Navigation