Skip to main content
Log in

Key concepts in muscle regeneration: muscle “cellular ecology” integrates a gestalt of cellular cross-talk, motility, and activity to remodel structure and restore function

  • Invited Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

This review identifies some key concepts of muscle regeneration, viewed from perspectives of classical and modern research. Early insights noted the pattern and sequence of regeneration across species was similar, regardless of the type of injury, and differed from epimorphic limb regeneration. While potential benefits of exercise for tissue repair was debated, regeneration was not presumed to deliver functional restoration, especially after ischemia–reperfusion injury; muscle could develop fibrosis and ectopic bone and fat. Standard protocols and tools were identified as necessary for tracking injury and outcomes. Current concepts vastly extend early insights. Myogenic regeneration occurs within the environment of muscle tissue. Intercellular cross-talk generates an interactive system of cellular networks that with the extracellular matrix and local, regional, and systemic influences, forms the larger gestalt of the satellite cell niche. Regenerative potential and adaptive plasticity are overlain by epigenetically regionalized responsiveness and contributions by myogenic, endothelial, and fibroadipogenic progenitors and inflammatory and metabolic processes. Muscle architecture is a living portrait of functional regulatory hierarchies, while cellular dynamics, physical activity, and muscle–tendon–bone biomechanics arbitrate regeneration. The scope of ongoing research—from molecules and exosomes to morphology and physiology—reveals compelling new concepts in muscle regeneration that will guide future discoveries for use in application to fitness, rehabilitation, and disease prevention and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

cGMP:

Cyclic guanosine monophosphate

ECM:

Extracellular matrix

FAP:

Fibro-adipogenic progenitor

HGF:

Hepatocyte growth factor

Hh:

Hedgehog

ICU:

Intensive care unit

IGF-1:

Insulin-like growth factor 1

IL:

Interleukin

mRNA:

Messenger RNA

miRNA:

MicroRNA

MRF:

Muscular regulatory factor

NAMPT:

Nicotinamide phosphoribosyl transferase

NMJ:

Neuromuscular junction

NO:

Nitric oxide

NOS-Iµ:

Neuronal nitric oxide synthase

Sema3A:

Semaphorin3A

siRNA:

Short interference RNA

TSC:

Terminal Schwann cell

VEGF:

Vascular endothelial growth factor

References

  • Addicks GC, Brun CE, Sincennes MC, Saber J, Porter CJ, Francis Stewart A, Ernst P, Rudnicki MA (2019) MLL1 is required for PAX7 expression and satellite cell self-renewal in mice. Nat Commun 10:4256

    PubMed  PubMed Central  Google Scholar 

  • Aguiar AF, Vechetti-Junior IJ, Souza RW, Piedade WP, Pacagnelli FL, Leopoldo AS, Casonatto J, Pai MD (2017) Nitric oxide synthase inhibition impairs muscle regrowth following immobilization. Nitric Oxide 69:22–27

    CAS  PubMed  Google Scholar 

  • Alfaro LA, Dick SA, Siegel AL, Anonuevo AS, McNagny KM, Megeney LA, Cornelison DD, Rossi FM (2011) CD34 promotes satellite cell motility and entry into proliferation to facilitate efficient skeletal muscle regeneration. Stem Cells 29:2030–2041

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allen DG, Whitehead NP, Froehner SC (2016) Absence of dystrophin disrupts skeletal muscle signaling: roles of Ca2+, reactive oxygen species, and nitric oxide in the development of muscular dystrophy. Physiol Rev 96:253–305

    CAS  PubMed  Google Scholar 

  • Aloisi M (1970) Patterns of muscle regeneration. In: Mauro A, Shafiq SA, Milhorat AT (eds) Regneration of striated muscle, and myogenesis. Excerpta Medica, Amsterdam, pp 180–193

    Google Scholar 

  • Alrushaid S, Davies NM, Anderson JE, Le T, Yáñez JA, Maayah ZH, El-Kadi AOS, Rachid O, Sayre CL, Löbenberg R, Burczynski FJ (2018) Pharmaceutical characterization of MyoNovin, a novel skeletal muscle regenerator: in silico, in vitro and in vivo studies. J Pharm Pharm Sci 21:29683

    PubMed  Google Scholar 

  • Anderson JE (1991) Dystrophic changes in mdx muscle regenerating from denervation and devascularization. Muscle Nerve 14:268–279

    CAS  PubMed  Google Scholar 

  • Anderson JE (2000) A role for nitric oxide in muscle repair: nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell 11:1859–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson J, Pilipowicz O (2002) Activation of muscle satellite cells in single-fiber cultures. Nitric Oxide 7:36–41

    CAS  PubMed  Google Scholar 

  • Anderson JE, Wozniak AC (2004) Satellite cell activation on fibers: modeling events in vivo—an invited review. Can J Physiol Pharmacol 82:300–310

    CAS  PubMed  Google Scholar 

  • Anderson JE, Bressler BH, Ovalle WK (1988) Functional regeneration in the hindlimb skeletal muscle of the mdx mouse. J Muscle Res Cell Motil 9:499–515

    CAS  PubMed  Google Scholar 

  • Anderson JE, Lentz DL, Johnson RB (1993) Recovery from disuse osteopenia coincident to restoration of muscle strength in mdx mice. Bone 14:625–634

    CAS  PubMed  Google Scholar 

  • Anderson JE, McIntosh LM, Poettcker R (1996) Deflazacort but not prednisone improves both muscle repair and fiber growth in diaphragm and limb muscle in vivo in the mdx dystrophic mouse. Muscle Nerve 19:1576–1585

    CAS  PubMed  Google Scholar 

  • Anderson JE, Garrett K, Moor A, McIntosh L, Penner K (1998a) Dystrophy and myogenesis in mdx diaphragm muscle. Muscle Nerve 21:1153–1165

    CAS  PubMed  Google Scholar 

  • Anderson JE, McIntosh LM, Moor AN, Yablonka-Reuveni Z (1998b) Levels of MyoD protein expression following injury of mdx and normal limb muscle are modified by thyroid hormone. J Histochem Cytochem 46:59–67

    CAS  PubMed  Google Scholar 

  • Anderson JE, Do MQ, Daneshvar N, Suzuki T, Dort J, Mizunoya W, Tatsumi R (2017a) The role of semaphorin3A in myogenic regeneration and the formation of functional neuromuscular junctions on new fibres. Biol Rev Camb Philos Soc 92:1389–1405

    PubMed  Google Scholar 

  • Anderson JE, Zhu A, Mizuno TM (2017b) Nitric oxide treatment attenuates muscle atrophy during hind limb suspension in mice. Free Radic Biol Med 115:458–470

    PubMed  Google Scholar 

  • Anderson JE, Cunha A, Docker MF (2019) Novel “omega muscle units” in superficial body-wall myotomes during metamorphosis in the northern brook lamprey (Ichthyomyzon fossor). Can J Zool 97:1218–1224

    CAS  Google Scholar 

  • Anonymous (1957) Increasing muscle strength. Br Med J 2:150–151

    Google Scholar 

  • Aoi W, Naito Y, Mizushima K, Takanami Y, Kawai Y, Ichikawa H, Yoshikawa T (2010) The microRNA miR-696 regulates PGC-1{alpha} in mouse skeletal muscle in response to physical activity. Am J Physiol Endocrinol Metab 298:E799–E806

    CAS  PubMed  Google Scholar 

  • Archer JD, Vargas CC, Anderson JE (2006) Persistent and improved functional gain in mdx dystrophic mice after treatment with L-arginine and deflazacort. FASEB J 20:738–740

    CAS  PubMed  Google Scholar 

  • Argiles JM, Campos N, Lopez-Pedrosa JM, Rueda R, Rodriguez-Manas L (2016) Skeletal muscle regulates metabolism via interorgan crosstalk: roles in health and disease. J Am Med Dir Assoc 17:789–796

    PubMed  Google Scholar 

  • Arora R, Rumman M, Venugopal N, Gala H, Dhawan J (2017) Mimicking muscle stem cell quiescence in culture: methods for synchronization in reversible arrest. Methods Mol Biol (clifton, NJ) 1556:283–302

    Google Scholar 

  • Arouche-Delaperche L, Allenbach Y, Amelin D, Preusse C, Mouly V, Mauhin W, Tchoupou GD, Drouot L, Boyer O, Stenzel W, Butler-Browne G, Benveniste O (2017) Pathogenic role of anti-signal recognition protein and anti-3-Hydroxy-3-methylglutaryl-CoA reductase antibodies in necrotizing myopathies: Myofiber atrophy and impairment of muscle regeneration in necrotizing autoimmune myopathies. Ann Neurol 81:538–548

    CAS  PubMed  Google Scholar 

  • Aurora A, Garg K, Corona BT, Walters TJ (2014) Physical rehabilitation improves muscle function following volumetric muscle loss injury. BMC Sports Sci Med Rehabil 6:41

    PubMed  PubMed Central  Google Scholar 

  • Baiguera S, Del Gaudio C, Di Nardo P, Manzari V, Carotenuto F, Teodori L (2020) 3D printing decellularized extracellular matrix to design biomimetic scaffolds for skeletal muscle tissue engineering. Biomed Res Int 2020:2689701

    PubMed  PubMed Central  Google Scholar 

  • Barik A, Li L, Sathyamurthy A, Xiong WC, Mei L (2016) Schwann cells in neuromuscular junction formation and maintenance. J Neurosci 36:9770–9781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barker TH, Engler AJ (2017) The provisional matrix: setting the stage for tissue repair outcomes. Matrix Biol 60–61:1–4

    PubMed  PubMed Central  Google Scholar 

  • Belizário JE, Fontes-Oliveira CC, Borges JP, Kashiabara JA, Vannier E (2016) Skeletal muscle wasting and renewal: a pivotal role of myokine IL-6. Springerplus 5:619

    PubMed  PubMed Central  Google Scholar 

  • Benedetti A, Cera G, De Meo D, Villani C, Bouche M, Lozanoska-Ochser B (2021) A novel approach for the isolation and long-term expansion of pure satellite cells based on ice-cold treatment. Skelet Muscle 11:7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bentzinger CF, von Maltzahn J, Dumont NA, Stark DA, Wang YX, Nhan K, Frenette J, Cornelison DD, Rudnicki MA (2014) Wnt7a stimulates myogenic stem cell motility and engraftment resulting in improved muscle strength. J Cell Biol 205:97–111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bentzinger CF, Wang YX, von Maltzahn J, Soleimani VD, Yin H, Rudnicki MA (2013) Fibronectin regulates Wnt7a signaling and satellite cell expansion. Cell Stem Cell 12:75–87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4:a008342

    PubMed  PubMed Central  Google Scholar 

  • Best TM, Gharaibeh B, Huard J (2013) Stem cells, angiogenesis and muscle healing: a potential role in massage therapies? Br J Sports Med 47:556–560

    PubMed  Google Scholar 

  • Betters JL, Lira VA, Soltow QA, Drenning JA, Criswell DS (2008a) Supplemental nitric oxide augments satellite cell activity on cultured myofibers from aged mice. Exp Gerontol 43:1094–1101

    CAS  PubMed  Google Scholar 

  • Betters JL, Long JH, Howe KS, Braith RW, Soltow QA, Lira VA, Criswell DS (2008b) Nitric oxide reverses prednisolone-induced inactivation of muscle satellite cells. Muscle Nerve 37:203–209

    CAS  PubMed  Google Scholar 

  • Biferali B, Proietti D, Mozzetta C, Madaro L (2019) Fibro-Adipogenic Progenitors Cross-Talk in Skeletal Muscle: The Social Network. Front Physiol 10:1074

    PubMed  PubMed Central  Google Scholar 

  • Bischoff R (1975) Regeneration of single skeletal muscle fibers in vitro. Anat Rec 182:215–235

    CAS  PubMed  Google Scholar 

  • Blaauw B, Schiaffino S, Reggiani C (2013) Mechanisms modulating skeletal muscle phenotype. Compr Physiol 3:1645–1687

    PubMed  Google Scholar 

  • Bonafè F, Guarnieri C, Muscari C (2015) Nitric oxide regulates multiple functions and fate of adult progenitor and stem cells. J Physiol Biochem 71:141–153

    PubMed  Google Scholar 

  • Boynton BL (1947) Trends in training in physical medicine. Arch Phys Med Rehabil 28:301–303

    CAS  PubMed  Google Scholar 

  • Brack AS, Bildsoe H, Hughes SM (2005) Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy. J Cell Sci 118:4813–4821

    CAS  PubMed  Google Scholar 

  • Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ, Keller C, Rando TA (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–810

    CAS  PubMed  Google Scholar 

  • Brack AS, Rando TA (2007) Intrinsic changes and extrinsic influences of myogenic stem cell function during aging. Stem Cell Rev 3:226–237

    CAS  PubMed  Google Scholar 

  • Brewerton DA, Darcus HD (1956) Discussion on an evaluation of the methods of increasing muscle strength. Proc R Soc Med 49:999–1008

    CAS  PubMed  Google Scholar 

  • Brooks B (1922) Pathological changes in muscle as a result of disturbances of circulation. An experimental study of Volkmann’s ischemic paralysis. Arch Surg 5:188–216

    Google Scholar 

  • Brooks SV, Faulkner JA (1988) Contractile properties of skeletal muscles from young, adult and aged mice. J Physiol 404:71–82

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown AC, Dysart MM, Clarke KC, Stabenfeldt SE, Barker TH (2015) Integrin α3β1 binding to fibronectin is dependent on the ninth type III repeat. J Biol Chem 290:25534–25547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brunelli S, Sciorati C, D’Antona G, Innocenzi A, Covarello D, Galvez BG, Perrotta C, Monopoli A, Sanvito F, Bottinelli R, Ongini E, Cossu G, Clementi E (2007) Nitric oxide release combined with nonsteroidal antiinflammatory activity prevents muscular dystrophy pathology and enhances stem cell therapy. Proc Natl Acad Sci USA 104:264–269

    CAS  PubMed  Google Scholar 

  • Brutsaert TD, Gavin TP, Fu Z, Breen EC, Tang K, Mathieu-Costello O, Wagner PD (2002) Regional differences in expression of VEGF mRNA in rat gastrocnemius following 1 hr exercise or electrical stimulation. BMC Physiol 2:8

    PubMed  PubMed Central  Google Scholar 

  • Buckingham M, Relaix F (2015) PAX3 and PAX7 as upstream regulators of myogenesis. Semin Cell Dev Biol 44:115–125

    CAS  PubMed  Google Scholar 

  • Buckingham M, Rigby PW (2014) Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell 28:225–238

    CAS  PubMed  Google Scholar 

  • Bugera EM, Duhamel TA, Peeler JD, Cornish SM (2018) The systemic myokine response of decorin, interleukin-6 (IL-6) and interleukin-15 (IL-15) to an acute bout of blood flow restricted exercise. Eur J Appl Physiol 118:2679–2686

    CAS  PubMed  Google Scholar 

  • Carlson BM (1968) Regeneration of the completely excised gastrocnemius muscle in the frog and rat from minced muscle fragments. J Morphol 125:447–471

    CAS  PubMed  Google Scholar 

  • Carlson BM (1972) The regeneration of minced muscles. Mongr Dev Biol 4:1–128

    CAS  Google Scholar 

  • Carlson BM, Faulkner JA (1983) The regeneration of skeletal muscle fibers following injury: a review. Med Sci Sports Exerc 15:187–198

    CAS  PubMed  Google Scholar 

  • Carlson BM, Faulkner JA (1989) Muscle transplantation between young and old rats: age of host determines recovery. Am J PhysiOL 256:C1262–C1266

    CAS  PubMed  Google Scholar 

  • Carosio S, Berardinelli MG, Aucello M, Musaro A (2011) Impact of ageing on muscle cell regeneration. Ageing Res Rev 10:35–42

    CAS  PubMed  Google Scholar 

  • Chang NC, Sincennes MC, Chevalier FP, Brun CE, Lacaria M, Segalés J, Muñoz-Cánoves P, Ming H, Rudnicki MA (2018) The dystrophin glycoprotein complex regulates the epigenetic activation of muscle stem cell commitment. Cell Stem Cell 22:755-768.e756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    CAS  PubMed  Google Scholar 

  • Chazaud B (2020) Inflammation and skeletal muscle regeneration: leave it to the macrophages! Trends Immunol 41:481–492

    CAS  PubMed  Google Scholar 

  • Chen YC, Allen SG, Ingram PN, Buckanovich R, Merajver SD, Yoon E (2015) Single-cell migration chip for chemotaxis-based microfluidic selection of heterogeneous cell populations. Sci Rep 5:1–13

    Google Scholar 

  • Chen X, Li Y (2009) Role of matrix metalloproteinases in skeletal muscle: migration, differentiation, regeneration and fibrosis. Cell Adh Migr 3:337–341

    PubMed  PubMed Central  Google Scholar 

  • Chen B, Shan T (2019) The role of satellite and other functional cell types in muscle repair and regeneration. J Muscle Res Cell Motil 40:1–8

    PubMed  Google Scholar 

  • Chen F, Zhou J, Li Y, Zhao Y, Yuan J, Cao Y, Wang L, Zhang Z, Zhang B, Wang CC, Cheung TH, Wu Z, Wong CC, Sun H, Wang H (2019) YY1 regulates skeletal muscle regeneration through controlling metabolic reprogramming of satellite cells. Embo J 38:e99727

    PubMed  PubMed Central  Google Scholar 

  • Cheung TH, Quach NL, Charville GW, Liu L, Park L, Edalati A, Yoo B, Hoang P, Rando TA (2012) Maintenance of muscle stem-cell quiescence by microRNA-489. Nature 482:524–528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung EV, Tidball JG (2003) Administration of the non-steroidal anti-inflammatory drug ibuprofen increases macrophage concentrations but reduces necrosis during modified muscle use. Inflamm Res 52:170–176

    CAS  PubMed  Google Scholar 

  • Choi YJ, Park SJ, Yi HG, Lee H, Kim DS, Cho DW (2018) Muscle-derived extracellular matrix on sinusoidal wavy surfaces synergistically promotes myogenic differentiation and maturation. J Mater Chem B 6:5530–5539

    CAS  PubMed  Google Scholar 

  • Christian CJ, Benian GM (2020) Animal models of sarcopenia. Aging Cell 19:e13223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Church JCT, Noronha RFX, Allbrook DB (1966) Satellite cells and skeletal muscle regeneration. Br J Surg 53:638–642

    Google Scholar 

  • Ciciliot S, Schiaffino S (2010) Regeneration of mammalian skeletal muscle. Basic mechanisms and clinical implications. Curr Pharm Des 16:906–914

    CAS  PubMed  Google Scholar 

  • Cisternas P, Henriquez JP, Brandan E, Inestrosa NC (2014) Wnt signaling in skeletal muscle dynamics: myogenesis, neuromuscular synapse and fibrosis. Mol Neurobiol 49:574–589

    CAS  PubMed  Google Scholar 

  • Clause KC, Barker TH (2013) Extracellular matrix signaling in morphogenesis and repair. Curr Opin Biotechnol 24:830–833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coggan AR, Spina RJ, King DS, Rogers MA, Brown M, Nemeth PM, Holloszy JO (1992) Skeletal muscle adaptations to endurance training in 60- to 70-yr-old men and women. J Appl Physiol 72:1780–1786

    CAS  PubMed  Google Scholar 

  • Cohn RD, Campbell KP (2000) Molecular basis of muscular dystrophies. Muscle Nerve 23:1456–1471

    CAS  PubMed  Google Scholar 

  • Collins BC, Kardon G (2018) Won’t you be my neighbor? Muscle stem cells recruit endothelial cells to their niche. Cell Stem Cell 23:455–456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collins CA, Zammit PS, Perez RA, Morgan JE, Partridge TA (2007) A population of myogenic stem cells that survives skeletal muscle aging. Stem Cells 25:885–894

    CAS  PubMed  Google Scholar 

  • Conboy IM, Conboy MJ, Smythe GM, Rando TA (2003) Notch-mediated restoration of regenerative potential to aged muscle. Science 302:1575–1577

    CAS  PubMed  Google Scholar 

  • Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA (2005) Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433:760–764

    CAS  PubMed  Google Scholar 

  • Conboy IM, Rando TA (2002) The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3:397–409

    CAS  PubMed  Google Scholar 

  • Contreras-Muñoz P, Torrella JR, Venegas V, Serres X, Vidal L, Vila I, Lahtinen I, Viscor G, Martínez-Ibáñez V, Peiró JL, Järvinen TAH, Rodas G, Marotta M (2021) Muscle precursor cells enhance functional muscle recovery and show synergistic effects with postinjury treadmill exercise in a muscle injury model in rats. Am J Sports Med 49:1073–1085

    PubMed  Google Scholar 

  • Cooper RN, Thiesson D, Furling D, Di Santo JP, Butler-Browne GS, Mouly V (2003) Extended amplification in vitro and replicative senescence: key factors implicated in the success of human myoblast transplantation. Hum Gene Ther 14:1169–1179

    CAS  PubMed  Google Scholar 

  • Cornelison D (2018) “Known Unknowns”: current questions in muscle satellite cell biology. Curr Top Dev Biol 126:205–233

    PubMed  Google Scholar 

  • Cornelison DD, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191:270–283

    CAS  PubMed  Google Scholar 

  • Cornish SM, Bugera EM, Duhamel TA, Peeler JD, Anderson JE (2020a) A focused review of myokines as a potential contributor to muscle hypertrophy from resistance-based exercise. Eur J Appl Physiol 120:941–959

    PubMed  Google Scholar 

  • Cornish SM, Chase JE, Bugera EM, Giesbrecht GG (2018) Systemic IL-6 and myoglobin response to three different resistance exercise intensities in older men. J Aging Phys Act 26:451–456

    PubMed  Google Scholar 

  • Cornish SM, Chilibeck PD, Candow DG (2020b) Potential importance of immune system response to exercise on aging muscle and bone. Curr Osteoporos Rep 18:350–356

    PubMed  Google Scholar 

  • Coulton GR, Morgan JE, Partridge TA, Sloper JC (1988) The mdx mouse skeletal muscle myopathy: I. A histological, morphometric and biochemical investigation. Neuropathol Appl Neurobiol 14:53–70

    CAS  PubMed  Google Scholar 

  • Csapo R, Gumpenberger M, Wessner B (2020) Skeletal muscle extracellular matrix—what do we know about its composition, regulation, and physiological roles? A narrative review. Front Physiol 11:253

    PubMed  PubMed Central  Google Scholar 

  • Csete ME, Doyle JC (2002) Reverse engineering of biological complexity. Science 295:1664–1669

    CAS  PubMed  Google Scholar 

  • Csete M, Walikonis J, Slawny N, Wei Y, Korsnes S, Doyle JC, Wold B (2001) Oxygen-mediated regulation of skeletal muscle satellite cell proliferation and adipogenesis in culture. J Cell Physiol 189:189–196

    CAS  PubMed  Google Scholar 

  • Daneshvar N, Tatsumi R, Peeler J, Anderson JE (2020) Premature satellite cell activation before injury accelerates myogenesis and disrupts neuromuscular junction maturation in regenerating muscle. Am J Physiol Cell Physiol 319:C116–C128

    CAS  PubMed  Google Scholar 

  • Day K, Shefer G, Shearer A, Yablonka-Reuveni Z (2010) The depletion of skeletal muscle satellite cells with age is concomitant with reduced capacity of single progenitors to produce reserve progeny. Dev Biol 340:330–343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Decary S, Hamida CB, Mouly V, Barbet JP, Hentati F, Butler-Browne GS (2000) Shorter telomeres in dystrophic muscle consistent with extensive regeneration in young children. Neuromuscul Disord 10:113–120

    CAS  PubMed  Google Scholar 

  • Delbono O (2011) Expression and regulation of excitation-contraction coupling proteins in aging skeletal muscle. Curr Aging Sci 4:248–259

    CAS  PubMed  Google Scholar 

  • Delsmann MM, Sturznickel J, Amling M, Ueblacker P, Rolvien T (2021) Musculoskeletal laboratory diagnostics in competitive sport. Der Orthopade 50:700–712

    PubMed  PubMed Central  Google Scholar 

  • Deng S, Azevedo M, Baylies M (2017) Acting on identity: Myoblast fusion and the formation of the syncytial muscle fiber. Semin Cell Dev Biol 72:45–55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Denny-Brown D (1949) Interpretation of the electromyogram. Arch Neurol Psychiatry 61:99–128

    CAS  PubMed  Google Scholar 

  • Dhawan J, Rando TA (2005) Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol 15:666–673

    CAS  PubMed  Google Scholar 

  • Diaz-Guerrero R, Thomson JD, Hines HM (1947a) Effect of hypothyroidism and hyperthyroidism on mammalian skeletal muscle. Proc Soc Exp Biol Med Soc Exp Biol Med (new York, NY) 66:95–96

    CAS  Google Scholar 

  • Diaz-Guerrero R, Thomson JD, Hines HM (1947b) Effect of thymectomy, hyperthyroidism and hypothyroidism on neuromuscular atrophy and regeneration. Am J Physiol 151:91–95

    CAS  PubMed  Google Scholar 

  • Dietrich S, Abou-Rebyeh F, Brohmann H, Bladt F, Sonnenberg-Riethmacher E, Yamaai T, Lumsden A, Brand-Saberi B, Birchmeier C (1999) The role of SF/HGF and c-Met in the development of skeletal muscle. Development 126:1621–1629

    CAS  PubMed  Google Scholar 

  • Diniz GP, Wang DZ (2016) Regulation of skeletal muscle by microRNAs. Compr Physiol 6:1279–1294

    PubMed  Google Scholar 

  • Disser NP, De Micheli AJ, Schonk MM, Konnaris MA, Piacentini AN, Edon DL, Toresdahl BG, Rodeo SA, Casey EK, Mendias CL (2020) Musculoskeletal consequences of COVID-19. J Bone Jt Surg Am 102:1197–1204

    Google Scholar 

  • Do MK, Sato Y, Shimizu N, Suzuki T, Shono J, Mizunoya W, Nakamura M, Ikeuchi Y, Anderson JE, Tatsumi R (2011) Growth factor regulation of neural chemorepellent Sema3A expression in satellite cell cultures. Am J Physiol Cell Physiol 301:C1270–C1279

    CAS  PubMed  Google Scholar 

  • Domingues-Faria C, Vasson MP, Goncalves-Mendes N, Boirie Y, Walrand S (2016) Skeletal muscle regeneration and impact of aging and nutrition. Ageing Res Rev 26:22–36

    CAS  PubMed  Google Scholar 

  • Drummond MJ, McCarthy JJ, Fry CS, Esser KA, Rasmussen BB (2008) Aging differentially affects human skeletal muscle microRNA expression at rest and after an anabolic stimulus of resistance exercise and essential amino acids. Am J Physiol Endocrinol Metab 295:E1333–E1340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duance VC, Stephens HR, Dunn M, Bailey AJ, Dubowitz V (1980) A role for collagen in the pathogenesis of muscular dystrophy? Nature 284:470–472

    CAS  PubMed  Google Scholar 

  • Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA (2015a) Satellite cells and skeletal muscle regeneration. Compr Physiol 5:1027–1059

    PubMed  Google Scholar 

  • Dumont NA, Wang YX, von Maltzahn J, Pasut A, Bentzinger CF, Brun CE, Rudnicki MA (2015b) Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med 21:1455–1463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn A, Marcinczyk M, Talovic M, Patel K, Haas G, Garg K (2018) Role of stem cells and extracellular matrix in the regeneration of skeletal muscle. In: Sakuma PK (ed) Muscle cell and tissue —current status of research field. InTechOpen, London

    Google Scholar 

  • Dunn A, Talovic M, Patel K, Patel A, Marcinczyk M, Garg K (2019) Biomaterial and stem cell-based strategies for skeletal muscle regeneration. J Orthop Res 37:1246–1262

    PubMed  Google Scholar 

  • Durbeej M, Campbell KP (2002) Muscular dystrophies involving the dystrophin-glycoprotein complex: an overview of current mouse models. Curr Opin Genet Dev 12:349–361

    CAS  PubMed  Google Scholar 

  • Dusterhoft S, Yablonka-Reuveni Z, Pette D (1990) Characterization of myosin isoforms in satellite cell cultures from adult rat diaphragm, soleus and tibialis anterior muscles. Differentiation 45:185–191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eccles JC (1944) Investigations on muscle atrophies arising from disuse and tenotomy. J Physiol 103:253–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Egan B, Zierath JR (2013) Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab 17:162–184

    CAS  PubMed  Google Scholar 

  • Eliazer S, Muncie JM, Christensen J, Sun X, D’Urso RS, Weaver VM, Brack AS (2019) Wnt4 from the niche controls the mechano-properties and quiescent state of muscle stem cells. Cell Stem Cell 25:654-665.e654

    CAS  PubMed  PubMed Central  Google Scholar 

  • English AW, Wilhelm JC, Ward PJ (2014) Exercise, neurotrophins, and axon regeneration in the PNS. Physiology (bethesda) 29:437–445

    CAS  Google Scholar 

  • Englund DA, Figueiredo VC, Dungan CM, Murach KA, Peck BD, Petrosino JM, Brightwell CR, Dupont AM, Neal AC, Fry CS, Accornero F, McCarthy JJ, Peterson CA (2021) Satellite cell depletion disrupts transcriptional coordination and muscle adaptation to exercise. Function (Oxf) 2:zqaa033

    Google Scholar 

  • Englund DA, Murach KA, Dungan CM, Figueiredo VC, Vechetti IJ Jr, Dupont-Versteegden EE, McCarthy JJ, Peterson CA (2020) Depletion of resident muscle stem cells negatively impacts running volume, physical function, and muscle fiber hypertrophy in response to lifelong physical activity. Am J Physiol Cell Physiol 318:C1178–C1188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Esteves de Lima J, Relaix F (2021) Master regulators of skeletal muscle lineage development and pluripotent stem cells differentiation. Cell Regener (London, England) 10:31

    Google Scholar 

  • Faria FE, Ferrari RJ, Distefano G, Ducatti AC, Soares KF, Montebelo MI, Minamoto VB (2008) The onset and duration of mobilization affect the regeneration in the rat muscle. Histol Histopathol 23:565–571

    CAS  PubMed  Google Scholar 

  • Febbraio MA, Pedersen BK (2005) Contraction-induced myokine production and release: is skeletal muscle an endocrine organ? Exerc Sport Sci Rev 33:114–119

    PubMed  Google Scholar 

  • Febbraio MA, Pedersen BK (2020) Who would have thought - myokines two decades on. Nat Rev Endocrinol 16:619–620

    PubMed  Google Scholar 

  • Feige P, Brun CE, Ritso M, Rudnicki MA (2018) Orienting Muscle Stem Cells for Regeneration in Homeostasis, Aging, and Disease. Cell Stem Cell 23:653–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng Z, Ko CP (2008) The role of glial cells in the formation and maintenance of the neuromuscular junction. Ann N Y Acad Sci 1132:19–28

    CAS  PubMed  Google Scholar 

  • Feng Z, Koirala S, Ko CP (2005) Synapse-glia interactions at the vertebrate neuromuscular junction. Neurosci 11:503–513

    CAS  Google Scholar 

  • Ferreira MM, Dewi RE, Heilshorn SC (2015) Microfluidic analysis of extracellular matrix-bFGF crosstalk on primary human myoblast chemoproliferation, chemokinesis, and chemotaxis. Integr Biol 7:569–579

    CAS  Google Scholar 

  • Filippin LI, Cuevas MJ, Lima E, Marroni NP, Gonzalez-Gallego J, Xavier RM (2011a) Nitric oxide regulates the repair of injured skeletal muscle. Nitric Oxide 24:43–49

    CAS  PubMed  Google Scholar 

  • Filippin LI, Cuevas MJ, Lima E, Marroni NP, Gonzalez-Gallego J, Xavier RM (2011b) The role of nitric oxide during healing of trauma to the skeletal muscle. Inflamm Res 60:347–356

    CAS  PubMed  Google Scholar 

  • Filippin LI, Moreira AJ, Marroni NP, Xavier RM (2009) Nitric oxide and repair of skeletal muscle injury. Nitric Oxide 21:157–163

    CAS  PubMed  Google Scholar 

  • Filippone C, Legros V, Jeannin P, Choumet V, Butler-Browne G, Zoladek J, Mouly V, Gessain A, Ceccaldi PE (2020) Arboviruses and muscle disorders: from disease to cell biology. Viruses 12:616

    CAS  PubMed Central  Google Scholar 

  • Fiore D, Judson RN, Low M, Lee S, Zhang E, Hopkins C, Xu P, Lenzi A, Rossi FM, Lemos DR (2016) Pharmacological blockage of fibro/adipogenic progenitor expansion and suppression of regenerative fibrogenesis is associated with impaired skeletal muscle regeneration. Stem Cell Res 17:161–169

    CAS  PubMed  Google Scholar 

  • Fischer E (1947) Muscle strength and the weather. Arch Phys Med Rehabil 28:295–300

    CAS  PubMed  Google Scholar 

  • Forcina L, Cosentino M, Musaro A (2020) Mechanisms regulating muscle regeneration: Insights into the interrelated and time-dependent phases of tissue healing. Cells Tissues Organs 9:1297–11325

    CAS  Google Scholar 

  • Franco I, Fernandez-Gonzalo R, Vrtačnik P, Lundberg TR, Eriksson M, Gustafsson T (2019) Healthy skeletal muscle aging: The role of satellite cells, somatic mutations and exercise. Int Rev Cell Mol Biol 346:157–200

    CAS  PubMed  Google Scholar 

  • Fry CS, Lee JD, Jackson JR, Kirby TJ, Stasko SA, Liu H, Dupont-Versteegden EE, McCarthy JJ, Peterson CA (2014) Regulation of the muscle fiber microenvironment by activated satellite cells during hypertrophy. FASEB J 28:1654–1665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fry CS, Lee JD, Mula J, Kirby TJ, Jackson JR, Liu F, Yang L, Mendias CL, Dupont-Versteegden EE, McCarthy JJ, Peterson CA (2015) Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med 21:76–80

    CAS  PubMed  Google Scholar 

  • García-Prat L, Perdiguero E, Alonso-Martín S, Dell’Orso S, Ravichandran S, Brooks SR, Juan AH, Campanario S, Jiang K, Hong X, Ortet L, Ruiz-Bonilla V, Flández M, Moiseeva V, Rebollo E, Jardí M, Sun HW, Musarò A, Sandri M, Del Sol A, Sartorelli V, Muñoz-Cánoves P (2020) FoxO maintains a genuine muscle stem-cell quiescent state until geriatric age. Nat Cell Biol 22:1307–1318

    PubMed  Google Scholar 

  • Geiger RS, Garvin JS (1957) Pattern of regeneration of muscle from progressive muscular dystrophy patients cultivated in vitro as compared to normal human skeletal muscle. J Neuropathol Exp Neurol 16:523–543

    CAS  PubMed  Google Scholar 

  • Gigliotti D, Leiter JR, MacDonald PB, Peeler J, Anderson JE (2016) Altered satellite cell responsiveness and denervation implicated in progression of rotator-cuff injury. PLoS One 11:e0162494

    PubMed  PubMed Central  Google Scholar 

  • Gigliotti D, Leiter JR, Macek B, Davidson MJ, MacDonald PB, Anderson JE (2015) Atrophy, inducible satellite cell activation, and possible denervation of supraspinatus muscle in injured human rotator-cuff muscle. Am J Physiol Cell Physiol 309:C383–C391

    CAS  PubMed  Google Scholar 

  • Gigliotti D, Xu MC, Davidson MJ, Macdonald PB, Leiter JRS, Anderson JE (2017) Fibrosis, low vascularity, and fewer slow fibers after rotator-cuff injury. Muscle Nerve 55:715–726

    CAS  PubMed  Google Scholar 

  • Gilbert-Honick J, Grayson W (2020) Vascularized and innervated skeletal muscle tissue engineering. Adv Healthc Mater 9:e1900626

    PubMed  Google Scholar 

  • Gillies AR, Chapman MA, Bushong EA, Deerinck TJ, Ellisman MH, Lieber RL (2017) High resolution three-dimensional reconstruction of fibrotic skeletal muscle extracellular matrix. J Physiol 595:1159–1171

    CAS  PubMed  Google Scholar 

  • Gillies AR, Lieber RL (2011) Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve 44:318–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giordani L, Puri PL (2013) Epigenetic control of skeletal muscle regeneration: Integrating genetic determinants and environmental changes. FEBS J 280:4014–4025

    CAS  PubMed  Google Scholar 

  • Giuliani G, Rosin, M, Reggio A (2021) Signaling pathways regulating the fate of fibro/adipogenic progenitors (FAPs) in skeletal muscle regeneration and disease. FEBS J

  • Goetsch SC, Hawke TJ, Gallardo TD, Richardson JA, Garry DJ (2003) Transcriptional profiling and regulation of the extracellular matrix during muscle regeneration. Physiol Genom 14:261–271

    CAS  Google Scholar 

  • Goldspink DF (1991) Exercise-related changes in protein turnover in mammalian striated muscle. J Exp Biol 160(127–48):127–148

    CAS  PubMed  Google Scholar 

  • Gomes AR, Coutinho EL, Franca CN, Polonio J, Salvini TF (2004) Effect of one stretch a week applied to the immobilized soleus muscle on rat muscle fiber morphology. Braz J Med Biol Res 37:1473–1480

    CAS  PubMed  Google Scholar 

  • Gordon T (2020) peripheral nerve regeneration and muscle reinnervation. Int J Mol Sci 21:8652

    CAS  PubMed Central  Google Scholar 

  • Gordon T, Borschel GH (2017) The use of the rat as a model for studying peripheral nerve regeneration and sprouting after complete and partial nerve injuries. Exp Neurol 287:331–347

    CAS  PubMed  Google Scholar 

  • Gordon T, English AW (2016) Strategies to promote peripheral nerve regeneration: electrical stimulation and/or exercise. Eur J Neurosci 43:336–350

    PubMed  Google Scholar 

  • Gorski JP, Price JL (2016) Bone muscle crosstalk targets muscle regeneration pathway regulated by core circadian transcriptional repressors DEC1 and DEC2. BoneKEy Rep 5:850

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Grand F, Rudnicki M (2007) Satellite and stem cells in muscle growth and repair. Development 134:3953–3957

    PubMed  Google Scholar 

  • Grant J, Goudarzi SH, Mrksich M (2018) High-throughput enzyme kinetics with 3D microfluidics and imaging SAMDI mass spectrometry. Anal Chem 90:13096–13103

    CAS  PubMed  Google Scholar 

  • Gregory TM, Heckmann RA, Francis RS (1995) The effect of exercise on the presence of leukocytes, erythrocytes and collagen fibers in skeletal muscle after contusion. J Manip Physiol Ther 18:72–78

    CAS  Google Scholar 

  • Griffiths HE (1943) Principles of occupational therapy in the treatment of the injured. Postgrad Med J 19:2–7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Gros Clark WE, Blomfield LB (1945) The efficiency of intramuscular anastomoses, with observations on the regeneration of devascularized muscle. J Anat 79:15

    Google Scholar 

  • Grounds MD (1987) Phagocytosis of necrotic muscle in muscle isografts is influenced by the strain, age, and sex of host mice. J Pathol 153:71–82

    CAS  PubMed  Google Scholar 

  • Grounds MD, McGeachie JK (1987) A model of myogenesis in vivo, derived from detailed autoradiographic studies of regenerating skeletal muscle, challenges the concept of quantal mitosis. Cell Tissue Res 250:563–569

    CAS  PubMed  Google Scholar 

  • Guller I, Russell AP (2010) MicroRNAs in skeletal muscle: their role and regulation in development, disease and function. J Physiol 588:4075–4087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gurevich DB, Nguyen PD, Siegel AL, Ehrlich OV, Sonntag C, Phan JM, Berger S, Ratnayake D, Hersey L, Berger J, Verkade H, Hall TE, Currie PD (2016) Asymmetric division of clonal muscle stem cells coordinates muscle regeneration in vivo. Science 353:aad9969

    PubMed  Google Scholar 

  • Haggmark T, Eriksson E, Jansson E (1986) Muscle fiber type changes in human skeletal muscle after injuries and immobilization. Orthopedics 9:181–185

    CAS  PubMed  Google Scholar 

  • Haggmark T, Jansson E, Eriksson E (1981) Fiber type area and metabolic potential of the thigh muscle in man after knee surgery and immobilization. Int J Sports Med 2:12–17

    CAS  PubMed  Google Scholar 

  • Hall-Craggs EC (1980) Early ultrastructural changes in skeletal muscle exposed to the local anaesthetic bupivacaine (Marcaine). Br J Exp Pathol 61:139–149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen-Smith FM, Carlson BM (1979) Cellular responses to free grafting of the extensor digitorum longus muscle of the rat. J Neurol Sci 41:149–173

    CAS  PubMed  Google Scholar 

  • Hara M, Tabata K, Suzuki T, Do MK, Mizunoya W, Nakamura M, Nishimura S, Tabata S, Ikeuchi Y, Sunagawa K, Anderson JE, Allen RE, Tatsumi R (2012) Calcium influx through a possible coupling of cation channels impacts skeletal muscle satellite cell activation in response to mechanical stretch. Am J Physiol Cell Physiol 302:C1741–C1750

    CAS  PubMed  Google Scholar 

  • Hardy D, Besnard A, Latil M, Jouvion G, Briand D, Thépenier C, Pascal Q, Guguin A, Gayraud-Morel B, Cavaillon JM, Tajbakhsh S, Rocheteau P, Chrétien F (2016) Comparative study of injury models for studying muscle regeneration in mice. PLoS ONE 11:e0147198

    PubMed  PubMed Central  Google Scholar 

  • Hartmann G, Naldini L, Weidner KM, Sachs M, Vigna E, Comoglio PM, Birchmeier W (1992) A functional domain in the heavy chain of scatter factor/hepatocyte growth factor binds the c-Met receptor and induces cell dissociation but not mitogenesis. Proc Natl Acad Sci USA 89:11574–11578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hawke TJ (2020) Expanding roles for muscle satellite cells in exercise-induced hypertrophy. Function 2:zqaa040

    PubMed  PubMed Central  Google Scholar 

  • He L, Ding Y, Zhao Y, So KK, Peng XL, Li Y, Yuan J, He Z, Chen X, Sun H, Wang H (2021) CRISPR/Cas9/AAV9-mediated in vivo editing identifies MYC regulation of 3D genome in skeletal muscle stem cell. Stem Cell Rep 16:2442–2458

    Google Scholar 

  • Henriksen T, Green C, Pedersen BK (2012) Myokines in myogenesis and health. Recent Pat Biotechnol 6:167–171

    CAS  PubMed  Google Scholar 

  • Heredia JE, Mukundan L, Chen FM, Mueller AA, Deo RC, Locksley RM, Rando TA, Chawla A (2013) Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle Regeneration. Cell 153:376–388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-Hernández JM, García-González EG, Brun CE, Rudnicki MA (2017) The myogenic regulatory factors, determinants of muscle development, cell identity and regeneration. Semin Cell Dev Biol 72:10–18

    PubMed  PubMed Central  Google Scholar 

  • Heydemann A, McNally E (2009) NO more muscle fatigue. J Clin Invest 119:448–450

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hiebert A, Anderson JE (2020) Satellite cell division and fiber hypertrophy alternate with new fiber formation during indeterminate muscle growth in juvenile lake sturgeon (Acipenser fulvescens). Can J Zool 98:449–459

    CAS  Google Scholar 

  • Huebner KD, Jassal DS, Halevy O, Pines M, Anderson JE (2008) Functional resolution of fibrosis in mdx mouse dystrophic heart and skeletal muscle by halofuginone. Am J Physiol Heart Circ Physiol 294:H1550–H1561

    CAS  PubMed  Google Scholar 

  • Huijbregts J, White JD, Grounds MD (2001) The absence of MyoD in regenerating skeletal muscle affects the expression pattern of basement membrane, interstitial matrix and integrin molecules that is consistent with delayed myotube formation. Acta Histochem 103:379–396

    CAS  PubMed  Google Scholar 

  • Hwang AB, Brack AS (2018) Muscle stem cells and aging. Curr Top Dev Biol 126:299–322

    PubMed  Google Scholar 

  • Jackson JR, Mula J, Kirby TJ, Fry CS, Lee JD, Ubele MF, Campbell KS, McCarthy JJ, Peterson CA, Dupont-Versteegden EE (2012) Satellite cell depletion does not inhibit adult skeletal muscle regrowth following unloading-induced atrophy. Am J Physiol Cell Physiol 303:C854-861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jakobsson F, Borg K, Edstrom L, Grimby L (1988) Use of motor units in relation to muscle fiber type and size in man. Muscle Nerve 11:1211–1218

    CAS  PubMed  Google Scholar 

  • Janke A, Upadhaya R, Snow WM, Anderson JE (2013) A new look at cytoskeletal NOS-1 and ƒ-dystroglycan changes in developing muscle and brain in control and mdx dystrophic mice. Dev Dyn 242:1369–1381

    CAS  PubMed  Google Scholar 

  • Jensen JB, Møller AB, Just J, Mose M, de Paoli FV, Billeskov TB, Fred RG, Pers TH, Pedersen SB, Petersen KK, Bjerre M, Farup J, Jessen N (2021) Isolation and characterization of muscle stem cells, fibro-adipogenic progenitors, and macrophages from human skeletal muscle biopsies. Am J Physiol Cell Physiol 321:C257-c268

    CAS  PubMed  Google Scholar 

  • Joanisse S, Nederveen JP, Snijders T, McKay BR, Parise G (2017) Skeletal muscle regeneration, repair and remodelling in aging: the importance of muscle stem cells and vascularization. Gerontology 63:91–100

    PubMed  Google Scholar 

  • Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FM (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12:153–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Juban G, Saclier M, Yacoub-Youssef H, Gondin J, Mounier R, Chazaud B (2018) TGF-B1 secretion by pro-inflammatory macrophages and controls fibrosis in Duchenne muscular dystrophy. Cell Rep 25:2163–2176

    CAS  PubMed  Google Scholar 

  • Kadi F, Ponsot E (2010) The biology of satellite cells and telomeres in human skeletal muscle: effects of aging and physical activity. Scand J Med Sci Sports 20:39–48

    CAS  PubMed  Google Scholar 

  • Khan MA (1976a) Histochemical and ultrastructural characteristics of a new muscle fibre type in avian striated muscle. Histochem J 11:321–335

    Google Scholar 

  • Khan MA (1976b) Histochemical characteristics of vertebrate striated muscle: a review. Prog Histochem Cytochem 8:1–48

    CAS  PubMed  Google Scholar 

  • Kimmel JC, Hwang AB, Scaramozza A, Marshall WF, Brack AS (2020) Aging induces aberrant state transition kinetics in murine muscle stem cells. Development 147:dev183855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk B, Feehan J, Lombardi G, Duque G (2020) Muscle, bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines. Curr Osteoporos Rep 18:388–400

    PubMed  Google Scholar 

  • Klitgaard H, Mantoni M, Schiaffino S, Ausoni S, Gorza L, Laurent-Winter C, Schnohr P, Saltin B (1990) Function, morphology and protein expression of ageing skeletal muscle: a cross-sectional study of elderly men with different training backgrounds. Acta Physiol Scand 140:41–54

    CAS  PubMed  Google Scholar 

  • Knappe S, Zammit PS, Knight RD (2015) A population of Pax7-expressing muscle progenitor cells show differential responses to muscle injury dependent on developmental stage and injury extent. Front Aging Neurosci 7:161

    PubMed  PubMed Central  Google Scholar 

  • Kok HJ, Barton ER (2021) Actions and interactions of IGF-I and MMPs during muscle regeneration. Semin Cell Dev Biol 119:11–22

    CAS  PubMed  Google Scholar 

  • Kowalski K, Kołodziejczyk A, Sikorska M, Płaczkiewicz J, Cichosz P, Kowalewska M, Stremińska W, Jańczyk-Ilach K, Koblowska M, Fogtman A, Iwanicka-Nowicka R, Ciemerych MA, Brzoska E (2017) Stem cells migration during skeletal muscle regeneration - the role of Sdf-1/Cxcr4 and Sdf-1/Cxcr7 axis. Cell Adh Migr 11:384–398

    CAS  PubMed  Google Scholar 

  • Kulkarni AS, Peck BD, Walton RG, Kern PA, Mar JC, Windham ST, Bamman MM, Barzilai N, Peterson CA (2020) Metformin alters skeletal muscle transcriptome adaptations to resistance training in older adults. Aging (Albany NY) 12:19852–19866

    CAS  Google Scholar 

  • Kuraitis D, Ebadi D, Zhang P, Rizzuto E, Vulesevic B, Padavan DT, Al Madhoun A, McEwan KA, Sofrenovic T, Nicholson K, Whitman SC, Mesana TG, Skerjanc IS, Musarò A, Ruel M, Suuronen EJ (2012) Injected matrix stimulates myogenesis and regeneration of mouse skeletal muscle after ischaemic injury. Eur Cells Mater 24:175–195 (discussion 195-176)

    CAS  Google Scholar 

  • LaFramboise WA, Daood MJ, Guthrie RD, Butler-Browne GS, Whalen RG, Ontell M (1990) Myosin isoforms in neonatal rat extensor digitorum longus, diaphragm, and soleus muscles. Am J Physiol 259:L116–L122

    CAS  PubMed  Google Scholar 

  • Lad H, Saumur TM, Herridge MS, dos Santos CC, Mathur S, Batt J, Gilbert PM (2020) Intensive care unit-acquired weakness: not just another muscle atrophying condition. Int J Mol Sci 21:7840

    CAS  PubMed Central  Google Scholar 

  • Lassar AB (2017) Finding MyoD and lessons learned along the way. Semin Cell Dev Biol 72:3–9

    CAS  PubMed  PubMed Central  Google Scholar 

  • Latroche C, Gitiaux C, Chretien F, Desguerre I, Mounier R, Chazaud B (2015) Skeletal muscle microvasculature: a highly dynamic lifeline. Physiology (bethesda) 30:417–427

    CAS  Google Scholar 

  • Laumonier T, Menetrey J (2016) Muscle injuries and strategies for improving their repair. J Exp Orthop 3:15

    PubMed  PubMed Central  Google Scholar 

  • Lavin KM, Bell MB, McAdam JS, Peck BD, Walton RG, Windham ST, Tuggle SC, Long DE, Kern PA, Peterson CA, Bamman MM (2021) Muscle transcriptional networks linked to resistance exercise training hypertrophic response heterogeneity. Physiol Genomics 53:206–221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee AS, Anderson JE, Joya JE, Head SI, Pather N, Kee AJ, Gunning PW, Hardeman EC (2013) Aged skeletal muscle retains the ability to fully regenerate functional architecture. BioArchitecture 3:25–37

    PubMed  PubMed Central  Google Scholar 

  • Lefaucheur JP, Sébille A (1995) The cellular events of injured muscle regeneration depend on the nature of the injury. Neuromuscul Disord 5:501–509

    CAS  PubMed  Google Scholar 

  • Legros V, Jeannin P, Burlaud-Gaillard J, Chaze T, Gianetto QG, Butler-Browne G, Mouly V, Zoladek J, Afonso PV, Gonzàlez MN, Matondo M, Riederer I, Roingeard P, Gessain A, Choumet V, Ceccaldi PE (2020) Differentiation-dependent susceptibility of human muscle cells to Zika virus infection. PLoS Negl Trop Dis 14:e0002282

    Google Scholar 

  • Leiter JR, Anderson JE (2010) Satellite cells are increasingly refractory to activation by nitric oxide and stretch in aged mouse-muscle cultures. Int J Biochem Cell Biol 42:132–136

    CAS  PubMed  Google Scholar 

  • Leiter JR, Upadhaya R, Anderson JE (2012) Nitric oxide and voluntary exercise together promote quadriceps hypertrophy and increase vascular density in female 18-mo-old mice. Am J Physiol Cell Physiol 302:C1306–C1315

    CAS  PubMed  Google Scholar 

  • Lemos DR, Paylor B, Chang C, Sampaio A, Underhill TM, Rossi FM (2012) Functionally convergent white adipogenic progenitors of different lineages participate in a diffused system supporting tissue regeneration. Stem Cells 30:1152–1162

    CAS  PubMed  Google Scholar 

  • Lepore E, Casola I, Dobrowolny G, Musarò A (2019) Neuromuscular junction as an entity of nerve-muscle communication. Cells 8:906

    CAS  PubMed Central  Google Scholar 

  • Li D, Bareja A, Judge L, Yue Y, Lai Y, Fairclough R, Davies KE, Chamberlain JS, Duan D (2010) Sarcolemmal nNOS anchoring reveals a qualitative difference between dystrophin and utrophin. J Cell Sci 123:2008–2013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Gundersen GG (2008) Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nat Rev Mol Cell Biol 9:860–873

    CAS  PubMed  Google Scholar 

  • Li EW, McKee-Muir OC, Gilbert PM (2018) Cellular biomechanics in skeletal muscle regeneration. Curr Top Dev Biol 126:125–176

    PubMed  Google Scholar 

  • Lieber RL, Ward SR (2013) Cellular mechanisms of tissue fibrosis. 4. Structural and functional consequences of skeletal muscle fibrosis. Am J Physiol Cell Physiol 305:C241-252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lister TD (1900) The abuse of exercise. Hospital (Lond 1886) 28:201

    Google Scholar 

  • Long DE, Peck BD, Tuggle SC, Villasante Tezanos AG, Windham ST, Bamman MM, Kern PA, Peterson CA, Walton RG (2021) Associations of muscle lipid content with physical function and resistance training outcomes in older adults: altered responses with metformin. Geroscience 43:629–644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3:a005058

    PubMed  PubMed Central  Google Scholar 

  • Luo D, Renault VM, Rando TA (2005) The regulation of Notch signaling in muscle stem cell activation and postnatal myogenesis. Semin Cell Dev Biol 16:612–622

    CAS  PubMed  Google Scholar 

  • Macefield VG, Knellwolf TP (2018) Functional properties of human muscle spindles. J Neurophysiol 120:452–467

    CAS  PubMed  Google Scholar 

  • Machado L, Geara P, Camps J, Dos Santos M, Teixeira-Clerc F, Van Herck J, Varet H, Legendre R, Pawlotsky J-M, Sampaolesi M, Voet T, Maire P, Relaix F, Mourikis P (2021) Tissue damage induces a conserved stress response that initiates quiescent muscle stem cell activation. Cell Stem Cell 28:1125-1135.e1127

    CAS  PubMed  Google Scholar 

  • von Maltzahn J, Chang NC, Bentzinger CF, Rudnicki MA (2012) Wnt signaling in myogenesis. Trends Cell Biol 22:602–609

    Google Scholar 

  • Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL, Muñoz-Cánoves P (2011) Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 1:21

    PubMed  PubMed Central  Google Scholar 

  • Marcinczyk M, Dunn A, Haas G, Madsen J, Scheidt R, Patel K, Talovic M, Garg K (2019) The effect of laminin-111 hydrogels on muscle regeneration in a murine model of injury. Tissue Eng Part A 25:1001–1012

    CAS  PubMed  Google Scholar 

  • Markin CJ, Mokhtari DA, Sunden F, Appel MJ, Akiva E, Longwell SA, Sabatti C, Herschlag D, Fordyce PM (2021) Revealing enzyme functional architecture via high-throughput microfluidic enzyme kinetics. Science 373:eabf8761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marrone AK, Shcherbata HR (2011) Dystrophin orchestrates the epigenetic profile of muscle cells via miRNAs. Front Genet 2:64

    PubMed  PubMed Central  Google Scholar 

  • Martin KS, Virgilio KM, Peirce SM, Blemker SS (2016) Computational modeling of muscle regeneration and adaptation to advance muscle tissue regeneration strategies. Cells Tissues Organs 202:250–266

    PubMed  Google Scholar 

  • Mashinchian O, Pisconti A, Le Moal E, Bentzinger CF (2018) The muscle stem cell niche in health and disease. Curr Top Dev Biol 126:23–65

    PubMed  Google Scholar 

  • Mathes S, Fahrner A, Ghoshdastider U, Rüdiger HA, Leunig M, Wolfrum C, Krützfeldt J (2021) FGF-2-dependent signaling activated in aged human skeletal muscle promotes intramuscular adipogenesis. Proc Natl Acad Sci USA 118

  • Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mauro A, Shafiq SA, Milhorat AT (1970) Regeneration of striated muscle, and myogenesis. Ekcerpta Medica, Amsterdam

    Google Scholar 

  • Maxwell LC, Faulkner JA, White TP, Hansen-Smith FM (1984) Growth of regenerating skeletal muscle fibers in cats. Anat Rec 209:153–163

    CAS  PubMed  Google Scholar 

  • McAllister RM, Newcomer SC, Laughlin MH (2008) Vascular nitric oxide: effects of exercise training in animals. Appl Physiol Nut Metab Physiol Appl Nutr Metab 33:173–178

    CAS  Google Scholar 

  • McCarthy JJ, Mula J, Miyazaki M, Erfani R, Garrison K, Farooqui AB, Srikuea R, Lawson BA, Grimes B, Keller C, Van Zant G, Campbell KS, Esser KA, Dupont-Versteegden EE, Peterson CA (2011) Effective fiber hypertrophy in satellite cell-depleted skeletal muscle. Development 138:3657–3666

    CAS  PubMed  PubMed Central  Google Scholar 

  • McComas AJ, Thomas HC (1968) Fast and slow twitch muscles in man. J Neurol Sci 7:301–307

    CAS  PubMed  Google Scholar 

  • McGeachie JK, Grounds MD (1987) Initiation and duration of muscle precursor replication after mild and severe injury to skeletal muscle of mice. An autoradiographic study. Cell Tissue Res 248:125–130

    CAS  PubMed  Google Scholar 

  • McIntosh LM, Garrett KL, Megeney L, Rudnicki MA, Anderson JE (1998) Regeneration and myogenic cell proliferation correlate with taurine levels in dystrophin- and MyoD-deficient muscles. Anat Rec 252:311–324

    CAS  PubMed  Google Scholar 

  • McIntosh LM, Pernitsky AN, Anderson JE (1994) The effects of altered metabolism (hypothyroidism) on muscle repair in the mdx dystrophic mouse. Muscle Nerve 17:444–453

    CAS  PubMed  Google Scholar 

  • McLoon LK, Rowe J, Wirtschafter J, McCormick KM (2004) Continuous myofiber remodeling in uninjured extraocular myofibers: myonuclear turnover and evidence for apoptosis. Muscle Nerve 29:707–715

    PubMed  PubMed Central  Google Scholar 

  • McLoon LK, Wirtschafter J (2002) Activated satellite cells are present in uninjured extraocular muscles of mature mice. Trans Am Ophthalmol Soc 100:119–123

    PubMed  PubMed Central  Google Scholar 

  • McLoon LK, Wirtschafter J (2003) Activated satellite cells in extraocular muscles of normal adult monkeys and humans. Invest Ophthalmol vis Sci 44:1927–1932

    PubMed  Google Scholar 

  • Mechalchuk CL, Bressler BH (1992) Contractility of mdx skeletal muscle after denervation and devascularization. Muscle Nerve 15:310–317

    CAS  PubMed  Google Scholar 

  • Megeney LA, Kablar B, Garrett K, Anderson JE, Rudnicki MA (1996) MyoD is required for myogenic stem cell function in adult skeletal muscle. Genes Dev 10:1173–1183

    CAS  PubMed  Google Scholar 

  • Mihaly E, Altamirano DE, Tuffaha S, Grayson W (2021) Engineering skeletal muscle: Building complexity to achieve functionality. Semin Cell Dev Biol 119:61–69

    CAS  PubMed  Google Scholar 

  • Mitchell R, Mellows B, Sheard J, Antonioli M, Kretz O, Chambers D, Zeuner MT, Tomkins JE, Denecke B, Musante L, Joch B, Debacq-Chainiaux F, Holthofer H, Ray S, Huber TB, Dengjel J, De Coppi P, Widera D, Patel K (2019) Secretome of adipose-derived mesenchymal stem cells promotes skeletal muscle regeneration through synergistic action of extracellular vesicle cargo and soluble proteins. Stem Cell Res Ther 10:116

    PubMed  PubMed Central  Google Scholar 

  • Mizunoya W, Upadhaya R, Burczynski FJ, Wang G, Anderson JE (2011) Nitric oxide donors improve prednisone effects on muscular dystrophy in the mdx mouse diaphragm. Am J Physiol Cell Physiol 300:C1065–C1077

    CAS  PubMed  Google Scholar 

  • Le Moal E, Pialoux V, Juban G, Groussard C, Zouhal H, Chazaud B, Mounier R (2017) Redox control of skeletal muscle regeneration. Antioxid Redox Signal 27:276–310

    PubMed  PubMed Central  Google Scholar 

  • Mok GF, Lozano-Velasco E, Munsterberg A (2017) microRNAs in skeletal muscle development. Semin Cell Dev Biol 2017:67–76

    Google Scholar 

  • Montandon M, Currie PD, Ruparelia AA (2021) Examining muscle regeneration in zebrafish models of muscle disease. J Vis Exp JoVE. https://doi.org/10.3791/62071

  • Moriscot A, Miyabara EH, Langeani B, Belli A, Egginton S, Bowen TS (2021) Firearms-related skeletal muscle trauma: pathophysiology and novel approaches for regeneration. NPJ Regen Med 6:17

    PubMed  PubMed Central  Google Scholar 

  • Morpugo B (1923) Nerve regeneration from one into the other of two rats united in Siamese pairs. J Physiol 58:98–100

    Google Scholar 

  • Mouly V, Aamiri A, Bigot A, Cooper RN, Di DS, Furling D, Gidaro T, Jacquemin V, Mamchaoui K, Negroni E, Perie S, Renault V, Silva-Barbosa SD, Butler-Browne GS (2005) The mitotic clock in skeletal muscle regeneration, disease and cell mediated gene therapy. Acta Physiol Scand 184:3–15

    CAS  PubMed  Google Scholar 

  • Moyer AL, Wagner KR (2011) Regeneration versus fibrosis in skeletal muscle. Curr Opin Rheumatol 23:568–573

    PubMed  Google Scholar 

  • Moyle LA, Cheng RY, Liu H, Davoudi S, Ferreira SA, Nissar AA, Sun Y, Gentleman E, Simmons CA, Gilbert PM (2020) Three-dimensional niche stiffness synergizes with Wnt7a to modulate the extent of satellite cell symmetric self-renewal divisions. Mol Biol Cell 31:1703–1713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murach KA, Peck BD, Policastro RA, Vechetti IJ, Van Pelt DW, Dungan CM, Denes LT, Fu X, Brightwell CR, Zentner GE, Dupont-Versteegden EE, Richards CI, Smith JJ, Fry CS, McCarthy JJ, Peterson CA (2021) Early satellite cell communication creates a permissive environment for long-term muscle growth. iScience 24:102372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murray PDF, Kodicek E (1949) Bones, Muscles and Vitamin C. I. The effect of a partial deficiency of vitamin C on the repair of bone and muscle in guinea-pigs. J Anat 83:158–174

    PubMed  PubMed Central  Google Scholar 

  • Musaro A (2014) The basis of muscle regeneration. Adv Biol 2014:1–16

    Google Scholar 

  • Musarò A (2020) Muscle homeostasis and regeneration: from molecular mechanisms to therapeutic opportunities. Cells 9

  • Muñoz-Cánoves P, Scheele C, Pedersen BK, Serrano AL (2013) Interleukin-6 myokine signaling in skeletal muscle: a double-edged sword? FEBS J 280:4131–4148

    PubMed  PubMed Central  Google Scholar 

  • Muñoz-Cánoves P, Serrano AL (2015) Macrophages decide between regeneration and fibrosis in muscle. Trends Endocrinol Metab 26:449–450

    PubMed  Google Scholar 

  • Natarajan A, Lemos DR, Rossi FM (2010) Fibro/adipogenic progenitors: a double-edged sword in skeletal muscle regeneration. Cell Cycle 9:2045–2046

    CAS  PubMed  Google Scholar 

  • Newman LB (1949) A new device for measuring muscle strength—the myometer. Arch Phys Med Rehabil 30:234–237

    CAS  PubMed  Google Scholar 

  • Nielsen S, Scheele C, Yfanti C, Akerstrom T, Nielsen AR, Pedersen BK, Laye M (2010) Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J Physiol 588:4029–4037

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ontell M (1974) Muscle satellite cells: a validated technique for light microscopic identification and a quantitative study of changes in their population following denervation. Anat Rec 178:211–227

    CAS  PubMed  Google Scholar 

  • Ontell M (1986) Morphological aspects of muscle fiber regeneration. Fed Proc 45:1461–1465

    CAS  PubMed  Google Scholar 

  • Owens DJ, Sharples AP, Polydorou I, Alwan N, Donovan T, Tang J, Fraser WD, Cooper RG, Morton JP, Stewart C, Close GL (2015) A systems-based investigation into vitamin D and skeletal muscle repair, regeneration, and hypertrophy. Am J Physiol Endocrinol Metab 309:E1019-1031

    CAS  PubMed  Google Scholar 

  • Paliwal VK, Garg RK, Gupta A, Tejan N (2020) Neuromuscular presentations in patients with COVID-19. Neurol Sci 41:3039–3056

    PubMed  PubMed Central  Google Scholar 

  • De Palma C, Clementi E (2012) Nitric oxide in myogenesis and therapeutic muscle repair. Mol Neurobiol 46:682–692

    CAS  PubMed  Google Scholar 

  • Panci G, Chazaud B (2021) Inflammation during post-injury skeletal muscle regeneration. Semin Cell Dev Biol 119:32–38

    CAS  PubMed  Google Scholar 

  • Park SS, Seo YK, Kwon KS (2019) Sarcopenia targeting with autophagy mechanism by exercise. BMB Rep 52:64–69

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parry DJ, Wilkinson RS (1990) The effect of reinnervation on the distribution of muscle fibre types in the tibialis anterior muscle of the mouse. Can J Appl Physiol Revue Can Physiol Appl 68:596–602

    CAS  Google Scholar 

  • Patel KH, Dunn AJ, Talovic M, Haas GJ, Marcinczyk M, Elmashhady H, Kalaf EG, Sell SA, Garg K (2019) Aligned nanofibers of decellularized muscle ECM support myogenic activity in primary satellite cells in vitro. Biomed Mater (Bristol, England) 14:035010

    CAS  Google Scholar 

  • Paylor B, Joe AW, Rossi FM, Lemos DR (2014) In vivo characterization of neural crest-derived fibro/adipogenic progenitor cells as a likely cellular substrate for craniofacial fibrofatty infiltrating disorders. Biochem Biophys Res Commun 451:148–151

    CAS  PubMed  Google Scholar 

  • Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88:1379–1406

    CAS  PubMed  Google Scholar 

  • Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8:457–465

    CAS  PubMed  Google Scholar 

  • Pette D (2001) Historical perspectives: plasticity of mammalian skeletal muscle. J Appl Physiol (1985) 90:1119–1124

    CAS  Google Scholar 

  • Pillon NJ, Bilan PJ, Fink LN, Klip A (2013) Cross-talk between skeletal muscle and immune cells: muscle-derived mediators and metabolic implications. Am J Physiol Endocrinol Metab 304:E453-465

    CAS  PubMed  Google Scholar 

  • Pisconti A, Brunelli S, Di Padova M, De Palma C, Deponti D, Baesso S, Sartorelli V, Cossu G, Clementi E (2006) Follistatin induction by nitric oxide through cyclic GMP: a tightly regulated signaling pathway that controls myoblast fusion. J Cell Biol 172:233–244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Popogeff IA, Murray MR (1956) Form and behavior of adult mammalian skeletal muscle in vitro. Anat Rec 95:321

    Google Scholar 

  • Pourghadamyari H, Rezaei M, Ipakchi-Azimi A, Eisa-Beygi S, Basiri M, Tahamtani Y, Baharvand H (2019) Establishing a new animal model for muscle regeneration studies. Mol Biol Res Commun 8:171–179

    PubMed  PubMed Central  Google Scholar 

  • Pozzi A, Yurchenco PD, Iozzo RV (2017) The nature and biology of basement membranes. Matrix Biol 57–58:1–11

    PubMed  Google Scholar 

  • Puri D, Swamy CVB, Dhawan J, Mishra RK (2021) Comparative nuclear matrix proteome analysis of skeletal muscle cells in different cellular states. Cell Biol Int 45:580–598

    CAS  PubMed  Google Scholar 

  • Purohit G, Dhawan J (2019) Adult muscle stem cells: exploring the links between systemic and cellular metabolism. Front Cell Dev Biol 7:312

    PubMed  PubMed Central  Google Scholar 

  • Qaisar R, Bhaskaran S, Van Remmen H (2016) Muscle fiber type diversification during exercise and regeneration. Free Radic Biol Med 98:56–67

    CAS  PubMed  Google Scholar 

  • Ratnayake D, Currie PD (2017) Stem cell dynamics in muscle regeneration: Insights from live imaging in different animal models. BioEssays 39:1700011

    Google Scholar 

  • Ratnayake D, Nguyen PD, Rossello FJ, Wimmer VC, Tan JL, Galvis LA, Julier Z, Wood AJ, Boudier T, Isiaku AI, Berger S, Oorschot V, Sonntag C, Rogers KL, Marcelle C, Lieschke GJ, Martino MM, Bakkers J, Currie PD (2021) Macrophages provide a transient muscle stem cell niche via NAMPT secretion. Nature 591:281–287

    CAS  PubMed  Google Scholar 

  • Reddy LV, Koirala S, Sugiura Y, Herrera AA, Ko CP (2003) Glial cells maintain synaptic structure and function and promote development of the neuromuscular junction in vivo. Neuron 40:563–580

    CAS  PubMed  Google Scholar 

  • Renault V, Piron-Hamelin G, Forestier C, DiDonna S, Decary S, Hentati F, Saillant G, Butler-Browne GS, Mouly V (2000) Skeletal muscle regeneration and the mitotic clock. Exp Gerontol 35:711–719

    CAS  PubMed  Google Scholar 

  • Reznik M (1970) Satellie cells, myoblasts, and skeletal muscle regeneration. In: Mauro A, Shafiq SA, Milhorat AT (eds) Regneration of striated muscle, and myogenesis. Excerpta Medica, Amsterdam, pp 133–156

    Google Scholar 

  • Robinson DCL, Dilworth FJ (2018) Epigenetic regulation of adult myogenesis. Curr Top Dev Biol 126:235–284

    PubMed  Google Scholar 

  • Rogers GD, Thistlethwaite JE, Anderson ES, Abrandt Dahlgren M, Grymonpre RE, Moran M, Samarasekera DD (2017) International consensus statement on the assessment of interprofessional learning outcomes. Med Teach 39:347–359

    PubMed  Google Scholar 

  • Roveimiab Z, Lin F, Anderson JE (2019) Emerging development of microfluidics-based approaches to improve studies of muscle cell migration. Tissue Eng Part B Rev 25:30–45

    PubMed  Google Scholar 

  • Roveimiab Z, Lin F, Anderson JE (2020) Traction and attraction: haptotaxis substrates collagen and fibronectin interact with chemotaxis by HGF to regulate myoblast migration in a microfluidic device. Am J Physiol Cell Physiol 319:C75-c92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rowlands RP (1905) A case of Volkmann’s contracture treated by shortening the radius and ulna. Lancet 166:1168–1171

    Google Scholar 

  • Rowlands RP (1922) The value of freedom and exercise after operations. Br Med J 1:52–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rudolf R, Khan MM, Witzemann V (2019) Motor endplate-anatomical, functional, and molecular concepts in the historical perspective. Cells 8:387

    CAS  PubMed Central  Google Scholar 

  • Safdar A, Abadi A, Akhtar M, Hettinga BP, Tarnopolsky MA (2009) miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PLoS One 4:e5610

    PubMed  PubMed Central  Google Scholar 

  • El Said NH, Della Valle F, Liu P, Paytuví-Gallart A, Adroub S, Gimenez J, Orlando V (2021) Malat-1-PRC2-EZH1 interaction supports adaptive oxidative stress dependent epigenome remodeling in skeletal myotubes. Cell Death Dis 12:850

    PubMed  PubMed Central  Google Scholar 

  • Saini J, McPhee JS, Al-Dabbagh S, Stewart CE, Al-Shanti N (2016) Regenerative function of immune system: Modulation of muscle stem cells. Ageing Res Rev 27:67–76

    CAS  PubMed  Google Scholar 

  • Sakaguchi S, Shono J, Suzuki T, Sawano S, Anderson JE, Do MK, Ohtsubo H, Mizunoya W, Sato Y, Nakamura M, Furuse M, Yamada K, Ikeuchi Y, Tatsumi R (2014) Implication of anti-inflammatory macrophages in regenerative moto-neuritogenesis: promotion of myoblast migration and neural chemorepellent semaphorin 3A expression in injured muscle. Int J Biochem Cell Biol 54:272–285

    CAS  PubMed  Google Scholar 

  • Sato Y, Do MK, Suzuki T, Ohtsubo H, Mizunoya W, Nakamura M, Furuse M, Ikeuchi Y, Tatsumi R (2013) Satellite cells produce neural chemorepellent semaphorin 3A upon muscle injury. Anim Sci J 84:185–189

    CAS  PubMed  Google Scholar 

  • Schultz E, Jaryszak DL (1985) Effects of skeletal muscle regeneration on the proliferation potential of satellite cells. Mech Ageing Dev 30:63–72

    CAS  PubMed  Google Scholar 

  • Sciorati C, Buono R, Azzoni E, Casati S, Ciuffreda P, D’Angelo G, Cattaneo D, Brunelli S, Clementi E (2010) Co-administration of ibuprofen and nitric oxide is an effective experimental therapy for muscular dystrophy, with immediate applicability to humans. Br J Pharmacol 160:1550–1560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sciorati C, Galvez BG, Brunelli S, Tagliafico E, Ferrari S, Cossu G, Clementi E (2006) Ex vivo treatment with nitric oxide increases mesoangioblast therapeutic efficacy in muscular dystrophy. J Cell Sci 119:5114–5123

    CAS  PubMed  Google Scholar 

  • Sciorati C, Miglietta D, Buono R, Pisa V, Cattaneo D, Azzoni E, Brunelli S, Clementi E (2011) A dual acting compound releasing nitric oxide (NO) and ibuprofen, NCX 320, shows significant therapeutic effects in a mouse model of muscular dystrophy. Pharmacol Res 64:210–217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sciorati C, Staszewsky L, Zambelli V, Russo I, Salio M, Novelli D, Di Grigoli G, Moresco RM, Clementi E, Latini R (2013) Ibuprofen plus isosorbide dinitrate treatment in the mdx mice ameliorates dystrophic heart structure. Pharmacol Res 73:35–43

    CAS  PubMed  Google Scholar 

  • Scognamiglio C, Soloperto A, Ruocco G, Cidonio G (2020) Bioprinting stem cells: building physiological tissues one cell at a time. Am J Physiol Cell Physiol 319:C465-c480

    CAS  PubMed  Google Scholar 

  • Shafiq SA, Gorycki MA, Milhorat AT (1967) An electron microscopic study of regeneration and satellite cells in human muscle. Neurology 17:567–574

    CAS  PubMed  Google Scholar 

  • Shafiq SA (1970) Satellite cells and fiber nuclei in muscle regeneration. In: Mauro A, Shafiq SA, Milhorat AT (eds) Regneration of striated muscle, and myogenesis. Excerpta Medica, Amsterdam, pp 122–132

    Google Scholar 

  • Sharma M, Juvvuna PK, Kukreti H, McFarlane C (2014) Mega roles of microRNAs in regulation of skeletal muscle health and disease. Front Physiol 5:239

    PubMed  PubMed Central  Google Scholar 

  • Sharples AP (2021) Skeletal muscle possesses an epigenetic memory of exercise: role of nucleus type-specific DNA methylation. Function 2:zqab047

    PubMed  PubMed Central  Google Scholar 

  • Shavlakadze T, McGeachie J, Grounds MD (2010) Delayed but excellent myogenic stem cell response of regenerating geriatric skeletal muscles in mice. Biogerontology 11:363–376

    PubMed  Google Scholar 

  • Shi L, Fu AK, Ip NY (2012) Molecular mechanisms underlying maturation and maintenance of the vertebrate neuromuscular junction. Trends Neurosci 35:441–453

    CAS  PubMed  Google Scholar 

  • Siegel AL, Atchison K, Fisher KE, Davis GE, Cornelison DD (2009) 3D timelapse analysis of muscle satellite cell motility. Stem Cells 27:2527–2538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siegel AL, Kuhlmann PK, Cornelison DD (2011) Muscle satellite cell proliferation and association: new insights from myofiber time-lapse imaging. Skelet Muscle 1:7. https://doi.org/10.1186/2044-5040-1181-1187

    Article  PubMed  PubMed Central  Google Scholar 

  • Siemionow M, Langa P, Harasymczuk M, Cwykiel J, Sielewicz M, Smieszek J, Heydemann A (2021) Human dystrophin expressing chimeric (DEC) cell therapy ameliorates cardiac, respiratory, and skeletal muscle’s function in Duchenne muscular dystrophy. Stem Cells Transl Med 10:1406–1418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siemionow M, Malik M, Langa P, Cwykiel J, Brodowska S, Heydemann A (2019) Cardiac protection after systemic transplant of dystrophin expressing chimeric (DEC) cells to the mdx mouse model of Duchenne muscular dystrophy. Stem Cell Rev Rep 15:827–841

    PubMed  PubMed Central  Google Scholar 

  • Sincennes MC, Brun CE, Lin AYT, Rosembert T, Datzkiw D, Saber J, Ming H, Kawabe YI, Rudnicki MA (2021) Acetylation of PAX7 controls muscle stem cell self-renewal and differentiation potential in mice. Nat Commun 12:3253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smythe GM, Shavlakadze T, Roberts P, Davies MJ, McGeachie JK, Grounds MD (2008) Age influences the early events of skeletal muscle regeneration: studies of whole muscle grafts transplanted between young (8 weeks) and old (13–21 months) mice. Exp Gerontol 43:550–562

    CAS  PubMed  Google Scholar 

  • Snijders T, Parise G (2017) Role of muscle stem cells in sarcopenia. Curr Opin Clin Nutr Metab Care 20:186–190

    CAS  PubMed  Google Scholar 

  • Snow MH (1973) Metabolic activity during the degenerative and early regenerative stages on skeletal muscle. Anat Rec 176:185–204

    CAS  PubMed  Google Scholar 

  • Somarelli JA (2021) The hallmarks of cancer as ecologically driven phenotypes. Front Ecol Evol 9

  • Song W, Kwak HB, Kim JH, Lawler JM (2009) Exercise training modulates the nitric oxide synthase profile in skeletal muscle from old rats. J Gerontol A Biol Sci Med Sci 64:540–549

    PubMed  Google Scholar 

  • Sonnenberg E, Meyer D, Weidner KM, Birchmeier C (1993) Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol 123:223–235

    CAS  PubMed  Google Scholar 

  • Srivastava S, Mishra RK, Dhawan J (2010) Regulation of cellular chromatin state: insights from quiescence and differentiation. Organogenesis 6:37–47

    PubMed  PubMed Central  Google Scholar 

  • Stark DA, Karvas RM, Siegel AL, Cornelison DD (2011) Eph/ephrin interactions modulate muscle satellite cell motility and patterning. Development 138:5279–5289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Staron RS, Pette D (1986) Correlation between myofibrillar ATPase activity and myosin heavy chain composition in rabbit muscle fibers. Histochemistry 86:19–23

    CAS  PubMed  Google Scholar 

  • Staron RS, Pette D (1987a) The multiplicity of combinations of myosin light chains and heavy chains in histochemically typed single fibres. Rabbit Tibialis anterior muscle. Biochem J 243:695–699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Staron RS, Pette D (1987b) Nonuniform myosin expression along single fibers of chronically stimulated and contralateral rabbit tibialis anterior muscles. Pflug Arch 409:67–73

    CAS  Google Scholar 

  • Studitsky AM (1963) Dynamics of the development of myogenic tissue under conditions of explantation and transplantation. In: Rose GG (ed) Cinemicrography in cell biology. Academic Press, New York, pp 171–200

    Google Scholar 

  • Subramaniam S, Sreenivas P, Cheedipudi S, Reddy VR, Shashidhara LS, Chilukoti RK, Mylavarapu M, Dhawan J (2013) Distinct transcriptional networks in quiescent myoblasts: a role for Wnt signaling in reversible vs. irreversible arrest. PLoS One 8:e65097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugimoto MA, Vago JP, Perretti M, Teixeira MM (2019) Mediators of the resolution of the inflammatory response. Trends Immunol 40:212–227

    CAS  PubMed  Google Scholar 

  • Sunada Y, Campbell KP (1995) Dystrophin-glycoprotein complex: molecular organization and critical roles in skeletal muscle. Curr Opin Neurol 8:379–384

    CAS  PubMed  Google Scholar 

  • Swaggart KA, McNally EM (2014) Modifiers of heart and muscle function: where genetics meets physiology. Exp Physiol 99:621–626

    CAS  PubMed  Google Scholar 

  • Swenarchuk LE (2019) Nerve, Muscle, and Synaptogenesis. Cells 8:1448

    CAS  PubMed Central  Google Scholar 

  • Tatsumi R (2010) Mechano-biology of skeletal muscle hypertrophy and regeneration: possible mechanism of stretch-induced activation of resident myogenic stem cells. Anim Sci J 81:11–20

    CAS  PubMed  Google Scholar 

  • Tatsumi R, Allen RE (2008) Mechano-biology of resident myogenic stem cells: Molecular mechanism of stretch-induced activation of satellite cells. Anim Sci J 79:279–290

    CAS  Google Scholar 

  • Tatsumi R, Hattori A, Ikeuchi Y, Anderson JE, Allen RE (2002) Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol Biol Cell 13:2909–2918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tatsumi R, Liu X, Pulido A, Morales M, Sakata T, Dial S, Hattori A, Ikeuchi Y, Allen RE (2006) Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor. Am J Physiol Cell Physiol 290:C1487–C1494

    CAS  PubMed  Google Scholar 

  • Tatsumi R, Sankoda Y, Anderson JE, Sato Y, Mizunoya W, Shimizu N, Suzuki T, Yamada M, Rhoads RP Jr, Ikeuchi Y, Allen RE (2009a) Possible implication of satellite cells in regenerative motoneuritogenesis: HGF upregulates neural chemorepellent Sema3A during myogenic differentiation. Am J Physiol Cell Physiol 297:C238–C252

    CAS  PubMed  Google Scholar 

  • Tatsumi R, Suzuki T, Do MQ, Ohya Y, Anderson JE, Shibata A, Kawaguchi M, Ohya S, Ohtsubo H, Mizunoya W, Sawano S, Komiya Y, Ichitsubo R, Ojima K, Nishimatsu SI, Nohno T, Ohsawa Y, Sunada Y, Nakamura M, Furuse M, Ikeuchi Y, Nishimura T, Yagi T, Allen RE (2017) Slow-myofiber commitment by semaphorin 3A secreted from myogenic stem Cells. Stem Cells 35:1815–1834

    CAS  PubMed  Google Scholar 

  • Tatsumi R, Wuollet AL, Tabata K, Nishimura S, Tabata S, Mizunoya W, Ikeuchi Y, Allen RE (2009b) A role for calcium-calmodulin in regulating nitric oxide production during skeletal muscle satellite cell activation. Am J Physiol Cell Physiol 296:C922–C929

    CAS  PubMed  Google Scholar 

  • Teixeira E, Duarte JA (2016) Skeletal muscle loading changes its regenerative capacity. Sports Med (auckland, NZ) 46:783–792

    Google Scholar 

  • Termin A, Staron RS, Pette D (1989) Myosin heavy chain isoforms in histochemically defined fiber types of rat muscle. Histochemistry 92:453–457

    CAS  PubMed  Google Scholar 

  • Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK (2016) Extracellular matrix structure. Adv Drug Deliv Rev 97:4–27

    CAS  PubMed  Google Scholar 

  • Theret M, Rossi FMV, Contreras O (2021) Evolving roles of muscle-resident fibro-adipogenic progenitors in health, regeneration, neuromuscular disorders, and aging. Front Physiol 12:673404

    PubMed  PubMed Central  Google Scholar 

  • Tidball JG (2005) Mechanical signal transduction in skeletal muscle growth and adaptation. J Appl Physiol 98:1900–1908

    CAS  PubMed  Google Scholar 

  • Tidball JG (2011) Mechanisms of muscle injury, repair, and regeneration. Compr Physiol 1:2029–2062

    PubMed  Google Scholar 

  • Tidball JG, Wehling-Henricks M (2007) Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J Physiol 578:327–336

    CAS  PubMed  Google Scholar 

  • Tierney MT, Sacco A (2016) Satellite cell heterogeneity in skeletal muscle homeostasis. Trends Cell Biol 26:434–444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tierney MT, Stec MJ, Rulands S, Simons BD, Sacco A (2018) Muscle stem cells exhibit distinct clonal dynamics in response to tissue repair and homeostatic aging. Cell Stem Cell 22:119-127.e113

    CAS  PubMed  Google Scholar 

  • Tierney MT, Stec MJ, Sacco A (2019) Assessing muscle stem cell clonal complexity during aging. Methods Mol Biol (clifton, NJ) 2045:1–11

    CAS  Google Scholar 

  • Timpani CA, Mamchaoui K, Butler-Browne G, Rybalka E (2020) Nitric oxide (NO) and duchenne muscular dystrophy: no way to go? Antioxidants (basel, Switzerland) 9:1268

    CAS  Google Scholar 

  • Tingle CF, Magnuson B, Zhao Y, Heisel CJ, Kish PE, Kahana A (2019) Paradoxical changes underscore epigenetic reprogramming during adult Zebrafish extraocular muscle regeneration. Invest Ophthalmol vis Sci 60:4991–4999

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tintignac LA, Brenner HR, Rüegg MA (2015) Mechanisms regulating neuromuscular junction development and function and causes of muscle wasting. Physiol Rev 95:809–852

    CAS  PubMed  Google Scholar 

  • Tomonaga M (1977) Histochemical and ultrastructural changes in senile human skeletal muscle. J Am Geriatr Soc 25:125–131

    CAS  PubMed  Google Scholar 

  • Turner NJ, Badylak SF (2012) Regeneration of skeletal muscle. Cell Tissue Res 347:759–774

    PubMed  Google Scholar 

  • Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K (2010) Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 12:143–152

    CAS  PubMed  Google Scholar 

  • Urso ML (2013) Anti-inflammatory interventions and skeletal muscle injury: benefit or detriment? J Appl Physiol (1985) 115:920–928

    CAS  Google Scholar 

  • Vechetti IJ Jr., Peck BD, Wen Y, Walton RG, Valentino TR, Alimov AP, Dungan CM, Van Pelt DW, von Walden F, Alkner B, Peterson CA, McCarthy JJ (2021) Mechanical overload-induced muscle-derived extracellular vesicles promote adipose tissue lipolysis. FASEB J 35:e21644

    CAS  PubMed  Google Scholar 

  • van Velthoven CTJ, de Morree A, Egner IM, Brett JO, Rando TA (2017) Transcriptional profiling of quiescent muscle stem cells in vivo. Cell Rep 21:1994–2004

    PubMed  PubMed Central  Google Scholar 

  • Verma M, Asakura Y, Murakonda BSR, Pengo T, Latroche C, Chazaud B, McLoon LK, Asakura A (2018) Muscle satellite cell cross-talk with a vascular niche maintains quiescence via VEGF and notch signaling. Cell Stem Cell 23:530-543.e539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villanueva C, Giulivi C (2010) Subcellular and cellular locations of nitric oxide synthase isoforms as determinants of health and disease. Free Radic Biol Med 49:307–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Virgilio KM, Jones BK, Miller EY, Ghajar-Rahimi E, Martin KS, Peirce SM, Blemker SS (2021) Computational models provide insight into in vivo studies and reveal the complex role of fibrosis in mdx muscle regeneration. Ann Biomed Eng 49:536–547

    PubMed  Google Scholar 

  • Vodovotz Y, Csete M, Bartels J, Chang S, An G (2008) Translational systems biology of inflammation. PLoS Comput Biol 4:e1000014

    PubMed  PubMed Central  Google Scholar 

  • Volkmann R (1893) Beitr Path Anat 12:233

    Google Scholar 

  • Waldeyer W (1865) Virchows Arch Path Anat Physiol 34:473

    Google Scholar 

  • Walton RG, Dungan CM, Long DE, Tuggle SC, Kosmac K, Peck BD, Bush HM, Villasante Tezanos AG, McGwin G, Windham ST, Ovalle F, Bamman MM, Kern PA, Peterson CA (2019) Metformin blunts muscle hypertrophy in response to progressive resistance exercise training in older adults: A randomized, double-blind, placebo-controlled, multicenter trial: the MASTERS trial. Aging Cell 18:e13039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Burczynski FJ, Hasinoff BB, Zhang K, Lu Q, Anderson JE (2009) Development of a nitric oxide-releasing analogue of the muscle relaxant guaifenesin for skeletal muscle satellite cell myogenesis. Mol Pharm 6:895–904

    CAS  PubMed  Google Scholar 

  • Wang YX, Feige P, Brun CE, Hekmatnejad B, Dumont NA, Renaud JM, Faulkes S, Guindon DE, Rudnicki MA (2019) EGFR-aurka signaling rescues polarity and regeneration defects in dystrophin-deficient muscle stem cells by increasing asymmetric divisions. Cell Stem Cell 24:419-432.e416

    PubMed  PubMed Central  Google Scholar 

  • Wang J, Wang G, Wang H, Chen Q, Burczynski FJ (2018) Review of recent patents and developments in skeletal muscle regeneration. Recent Pat Drug Deliv Formul 12:238–251

    CAS  PubMed  Google Scholar 

  • Wang J, Zhou CJ, Khodabukus A, Tran S, Han SO, Carlson AL, Madden L, Kishnani PS, Koeberl DD, Bursac N (2021) Three-dimensional tissue-engineered human skeletal muscle model of Pompe disease. Commun Biol 4:524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Webster MT, Fan CM (2013) c-MET regulates myoblast motility and myocyte fusion during adult skeletal muscle regeneration. PLoS One 8:e81757

    PubMed  PubMed Central  Google Scholar 

  • Welle S, Thornton C, Jozefowicz R, Statt M (1993) Myofibrillar protein synthesis in young and old men. Am J Physiol 264:E693–E698

    CAS  PubMed  Google Scholar 

  • Wen Y, Dungan CM, Mobley CB, Valentino T, Von Walden F, Murach KA (2021) Nucleus type-specific DNA methylomics reveals epigenetic “memory” of prior adaptation in skeletal muscle. Function 2:zqab038

    PubMed  PubMed Central  Google Scholar 

  • Wessner B, Gryadunov-Masutti L, Tschan H, Bachl N, Roth E (2010) Is there a role for microRNAs in exercise immunology? A synopsis of current literature and future developments. Exerc Immunol Rev 16:22–39

    PubMed  Google Scholar 

  • Witzemann V, Chevessier F, Pacifici PG, Yampolsky P (2013) The neuromuscular junction: selective remodeling of synaptic regulators at the nerve/muscle interface. Mech Dev 130:402–411

    CAS  PubMed  Google Scholar 

  • Woodard CR (1949) Recent athletic injuries and their treatment. Physiotherapy 35:105–108

    CAS  PubMed  Google Scholar 

  • Wosczyna MN, Rando TA (2018) A muscle stem cell support group: coordinated cellular responses in muscle regeneration. Dev Cell 46:135–143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wozniak AC, Anderson JE (2005) Single-fiber isolation and maintenance of satellite cell quiescence. Biochem Cell Biol 83:674–676

    CAS  PubMed  Google Scholar 

  • Wozniak AC, Anderson JE (2007) Nitric oxide-dependence of satellite stem cell activation and quiescence on normal skeletal muscle fibers. Dev Dyn 236:240–250

    CAS  PubMed  Google Scholar 

  • Wozniak AC, Anderson JE (2009) The dynamics of the nitric oxide release-transient from stretched muscle cells. Int J Biochem Cell Biol 41:625–631

    CAS  PubMed  Google Scholar 

  • Wozniak AC, Kong J, Bock E, Pilipowicz O, Anderson JE (2005) Signaling satellite-cell activation in skeletal muscle: Markers, models, stretch, and potential alternate pathways. Muscle Nerve 31:283–300

    CAS  PubMed  Google Scholar 

  • Wozniak AC, Pilipowicz O, Yablonka-Reuveni Z, Greenway S, Craven S, Scott E, Anderson JE (2003) C-met expression and mechanical activation of satellite cells on cultured muscle fibers. J Histochem Cytochem 51:1437–1445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie G, Karaca G, Swiderska-Syn M, Michelotti GA, Kruger L, Chen Y, Premont RT, Choi SS, Diehl AM (2013) Cross-talk between notch and hedgehog regulates hepatic stellate cell fate. Hepatology 58:1801–1813

    CAS  PubMed  Google Scholar 

  • Yamada M, Sankoda Y, Tatsumi R, Mizunoya W, Ikeuchi Y, Sunagawa K, Allen RE (2008) Matrix metalloproteinase-2 mediates stretch-induced activation of skeletal muscle satellite cells in a nitric oxide-dependent manner. Int J Biochem Cell Biol 40:2183–2191

    CAS  PubMed  Google Scholar 

  • Yamada M, Tatsumi R, Yamanouchi K, Hosoyama T, Shiratsuchi S, Sato A, Mizunoya W, Ikeuchi Y, Furuse M, Allen RE (2010) High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: a possible mechanism for reestablishing satellite cell quiescence in vivo. Am J Physiol Cell Physiol 298:C465–C476

    CAS  PubMed  Google Scholar 

  • Yamakawa H, Kusumoto D, Hashimoto H, Yuasa S (2020) Stem cell aging in skeletal muscle regeneration and disease. Int J Mol Sci 21:1830

    CAS  PubMed Central  Google Scholar 

  • Yang W, Hu P (2018) Hierarchical signaling transduction of the immune and muscle cell crosstalk in muscle regeneration. Cell Immunol 326:2–7

    CAS  PubMed  Google Scholar 

  • Yao L, Tichy ED, Zhong L, Mohanty S, Wang L, Ai E, Yang S, Mourkioti F, Qin L (2021) Gli1 defines a subset of fibro-adipogenic progenitors that promote skeletal muscle regeneration with less fat accumulation. J Bone Miner Res 36:1159–1173

    CAS  PubMed  Google Scholar 

  • Yaseen W, Kraft-Sheleg O, Zaffryar-Eilot S, Melamed S, Sun C, Millay DP, Hasson P (2021) Fibroblast fusion to the muscle fiber regulates myotendinous junction formation. Nat Commun 12:3852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh CR, Bingham GC, Shetty J, Hu P, Barker TH (2021) Decellularized extracellular matrix (ECM) as a model to study fibrotic ECM mechanobiology. Methods Mol Biol (clifton, NJ) 99:237–261

    Google Scholar 

  • Yoshioka K, Nagahisa H, Miura F, Araki H, Kamei Y, Kitajima Y, Seko D, Nogami J, Tsuchiya Y, Okazaki N, Yonekura A, Ohba S, Sumita Y, Chiba K, Ito K, Asahina I, Ogawa Y, Ito T, Ohkawa Y, Ono Y (2021) Hoxa10 mediates positional memory to govern stem cell function in adult skeletal muscle. Sci Adv 7:eabd7924

    CAS  PubMed  PubMed Central  Google Scholar 

  • You JS, Chen J (2021) Autophagy-dependent regulation of skeletal muscle regeneration and strength by a RHOGEF. Autophagy 17:1044–1045

    CAS  PubMed  PubMed Central  Google Scholar 

  • You JS, Singh N, Reyes-Ordonez A, Khanna N, Bao Z, Zhao H, Chen J (2021) ARHGEF3 regulates skeletal muscle regeneration and strength through autophagy. Cell Rep 34:108594

    CAS  PubMed  Google Scholar 

  • Zammit PS (2017) Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol 72:19–32

    CAS  PubMed  Google Scholar 

  • Zhang H, Anderson JE (2014) Satellite cell activation and populations on single muscle-fiber cultures from adult zebrafish (Danio rerio). J Exp Biol 217:1910–1917

    PubMed  Google Scholar 

Download references

Acknowledgements

Many collaborators, colleagues and students have made this work possible.

Funding

The author is grateful for research funding from the Natural Science and Engineering Research Council of Canada (NSERC-RG-PIN-3833-2015).

Author information

Authors and Affiliations

Authors

Contributions

JA is the sole author; after the invitation to write this review, the author conducted all research for the literature review, drafted and edited the manuscript, and composed the figure.

Corresponding author

Correspondence to Judy E. Anderson.

Ethics declarations

Conflict of interest

The author has no relevant financial or non-financial interests to disclose that are relevant to the content of this article. The review was researched and written by the author, alone, after invitation.

Additional information

Communicated by Michael Lindinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, J.E. Key concepts in muscle regeneration: muscle “cellular ecology” integrates a gestalt of cellular cross-talk, motility, and activity to remodel structure and restore function. Eur J Appl Physiol 122, 273–300 (2022). https://doi.org/10.1007/s00421-021-04865-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-021-04865-4

Keywords