Skip to main content

Advertisement

Log in

Pre-acclimation to altitude in young adults: choosing a hypoxic pattern at sea level which provokes significant haematological adaptations

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

This single-blind, repeated measures study evaluated adaptive and maladaptive responses to continuous and intermittent hypoxic patterns in young adults.

Methods

Changes in haematological profile, stress and cardiac damage were measured in ten healthy young participants during three phases: (1) breathing normoxic air (baseline); (2) breathing normoxic air via a mask (Sham-controls); (3) breathing intermittent hypoxia (IH) via a mask, mean peripheral oxygen saturation (SpO2) of 85% ~ 70 min of hypoxia. After a 5-month washout period, participants repeated this three-phase protocol with phase, (4) consisting of continuous hypoxia (CH), mean SpO2 = 85%, ~ 70 min of hypoxia. Measures of the red blood cell count (RBCc), haemoglobin concentration ([Hb]), haematocrit (Hct), percentage of reticulocytes (% Retics), secretory immunoglobulin A (S-IgA), cortisol, cardiac troponin T (cTnT) and the erythropoietic stimulation index (calculated OFF-score) were compared across treatments.

Results

Despite identical hypoxic durations at the same fixed SpO2, no significant effects were observed in either CH or Sham-CH control, compared to baseline. While IH and Sham-IH controls demonstrated significant increases in: RBCc; [Hb]; Hct; and the erythropoietic stimulation index. Notably, the % Retics decreased significantly in response to IH (-31.9%) or Sham-IH control (-23.6%), highlighting the importance of including Sham-controls. No difference was observed in S-IgA, cortisol or cTnT.

Conclusion

The IH but not CH pattern significantly increased key adaptive haematological responses, without maladaptive increases in S-IgA, cortisol or cTnT, indicating that the IH hypoxic pattern would be the best method to boost haematological profiles prior to ascent to altitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

% Retics :

Percentage of reticulocytes

CH :

Continuous hypoxia

cTnT :

Cardiac troponin T

EPO :

Erythropoietin

FiO 2 :

Fraction of inspired oxygen

Hct :

Haematocrit

[Hb] :

Haemoglobin concentration

HIF :

Hypoxia inducible factors

IH :

Intermittent hypoxia

OFF-score :

Erythropoietic stimulation index

PiO 2 :

Inspired oxygen partial pressure

RBC c :

Red blood cell count

S-IgA :

Secretory immunoglobulin A

SpO 2 :

Peripheral oxygen saturation

References

  • Brugniaux JV, Pialoux V, Foster GE, Duggan CT, Eliasziw M, Hanly PJ, Poulin MJ (2011) Effects of intermittent hypoxia on erythropoietin, soluble erythropoietin receptor and ventilation in humans. Eur Respir J 37(4):880–887

    Article  CAS  Google Scholar 

  • Burtscher M, Mairer K, Wille M, Gatterer H, Ruedl G, Faulhaber M, Sumann G (2012) Short-term exposure to hypoxia for work and leisure activities in health and disease: which level of hypoxia is safe? Sleep Breath 16(2):435–442

    Article  Google Scholar 

  • Butcher SJ, Jones RL, Eves ND, Petersen SR (2006) Work of breathing is increased during exercise with the self-contained breathing apparatus regulator. Appl Physiol Nutr Metab 31(6):693–701

    Article  Google Scholar 

  • Costalat G, Lemaitre F, Tobin B, Renshaw G (2017) Intermittent hypoxia revisited: a promising non-pharmaceutical strategy to reduce cardio-metabolic risk factors? Sleep Breath 2(10):017–1459

    Google Scholar 

  • Dill DB, Costill DL (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37(2):247–248

    Article  CAS  Google Scholar 

  • Dubois AB, Botelho SY, Comroe JH Jr (1956) A new method for measuring airway resistance in man using a body plethysmograph: values in normal subjects and in patients with respiratory disease. J Clin Investig 35(3):327–335. https://doi.org/10.1172/jci103282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunham-Snary KJ, Wu D, Sykes EA, Thakrar A, Parlow LRG, Mewburn JD, Parlow JL, Archer SL (2017) Hypoxic pulmonary vasoconstriction: from molecular mechanisms to medicine. Chest 151(1):181–192

    Article  Google Scholar 

  • Faulhaber M, Wille M, Gatterer H, Heinrich D, Burtscher M (2014) Resting arterial oxygen saturation and breathing frequency as predictors for acute mountain sickness development: a prospective cohort study. Sleep Breath 17:17

    Google Scholar 

  • Faulhaber M, Pocecco E, Gatterer H, Niedermeier M, Huth M, Dünnwald T, Menz V, Bernardi L, Burtscher M (2016) Seven passive 1-h hypoxia exposures do not prevent AMS in susceptible individuals. Med Sci Sports Exerc 48(12):2563–2570

    Article  CAS  Google Scholar 

  • Foster GE, McKenzie DC, Milsom WK, Sheel AW (2005) Effects of two protocols of intermittent hypoxia on human ventilatory, cardiovascular and cerebral responses to hypoxia. J Physiol 567(Pt 2):689–699

    Article  CAS  Google Scholar 

  • Fulco CS, Rock PB, Cymerman A (1998) Maximal and submaximal exercise performance at altitude. Aviat Space Environ Med 69(8):793–801

    CAS  PubMed  Google Scholar 

  • Fulco CS, Muza SR, Beidleman BA, Demes R, Staab JE, Jones JE, Cymerman A (2011) Effect of repeated normobaric hypoxia exposures during sleep on acute mountain sickness, exercise performance, and sleep during exposure to terrestrial altitude. Am J Physiol Regul Integr Comp Physiol 300(2):1

    Article  Google Scholar 

  • Fulco CS, Beidleman BA, Muza SR (2013) Effectiveness of preacclimatization strategies for high-altitude exposure. Exerc Sport Sci Rev 41(1):55–63

    Article  Google Scholar 

  • Gore CJ, Parisotto R, Ashenden MJ, Stray-Gundersen J, Sharpe K, Hopkins W, Emslie KR, Howe C, Trout GJ, Kazlauskas R, Hahn AG (2003) Second-generation blood tests to detect erythropoietin abuse by athletes. Haematologica 88(3):333–344

    PubMed  Google Scholar 

  • Jelkmann W (2011) Regulation of erythropoietin production. J Physiol 589(Pt 6):1251–1258

    Article  CAS  Google Scholar 

  • Kim TS, Hanak M, Trampont PC, Braciale TJ (2015) Stress-associated erythropoiesis initiation is regulated by type 1 conventional dendritic cells. J Clin Investig 125(10):3965–3980

    Article  Google Scholar 

  • Koehle MS, Sheel AW, Milsom WK, McKenzie DC (2007) Two patterns of daily hypoxic exposure and their effects on measures of chemosensitivity in humans. J Appl Physiol 103(6):1973–1978

    Article  Google Scholar 

  • Koistinen PO, Rusko H, Irjala K, Rajamäki A, Penttinen K, Sarparanta VP, Karpakka J, Leppäluoto J (2000) EPO, red cells, and serum transferrin receptor in continuous and intermittent hypoxia. Med Sci Sports Exerc 32(4):800–804. https://doi.org/10.1097/00005768-200004000-00012

    Article  CAS  PubMed  Google Scholar 

  • Lobigs LM, Sharpe K, Garvican-Lewis LA, Gore CJ, Peeling P, Dawson B, Schumacher YO (2017) The athlete’s hematological response to hypoxia: a meta-analysis on the influence of altitude exposure on key biomarkers of erythropoiesis. Am J Hematol 93(1):74–83. https://doi.org/10.1002/ajh.24941

    Article  CAS  PubMed  Google Scholar 

  • Luks AM, Auerbach PS, Freer L, Grissom CK, Keyes LE, McIntosh SE, Rodway GW, Schoene RB, Zafren K, Hackett PH (2019) Wilderness Medical Society Clinical Practice Guidelines for the Prevention and Treatment of Acute Altitude Illness: 2019 Update. Wilderness Environ Med 30(4, supplement):S3–S18. https://doi.org/10.1016/j.wem.2019.04.006

    Article  PubMed  Google Scholar 

  • Luks AM, Swenson ER, Bärtsch P (2017) Acute high-altitude sickness. Eur Respir Rev 26(143)

  • Mallet RT, Manukhina EB, Ruelas SS, Caffrey JL, Downey HF (2018) Cardioprotection by intermittent hypoxia conditioning: evidence, mechanisms, and therapeutic potential. Am J Physiol Heart Circ Physiol 315(2):H216–H232

    Article  CAS  Google Scholar 

  • McCambridge J, Witton J, Elbourne DR (2014) Systematic review of the Hawthorne effect: new concepts are needed to study research participation effects. J Clin Epidemiol 67(3):267–277. https://doi.org/10.1016/j.jclinepi.2013.08.015

    Article  PubMed  PubMed Central  Google Scholar 

  • Michiels C, Tellier C, Feron O (2016) Cycling hypoxia: a key feature of the tumor microenvironment. Biochim Biophys Acta Rev Cancer 1866(1):76–86. https://doi.org/10.1016/j.bbcan.2016.06.004

    Article  CAS  Google Scholar 

  • Millet GP, Brocherie F (2020) Hypoxic training is beneficial in elite athletes. Med Sci Sports Exerc 52(2):515–518

    Article  Google Scholar 

  • Millet GP, Brocherie F, Girard O, Wehrlin JP, Troesch S, Hauser A, Steiner T, Peltonen JE, Rusko HK, Constantini K, Fulton TJ, Hursh DG, Noble TJ, Paris HL, Wiggins CC, Chapman RF, Levine BD, Kumar VH, Schmidt WF (2016) Commentaries on Viewpoint: Time for a new metric for hypoxic dose? J Appl Physiol (1985) 121(1):356–358. https://doi.org/10.1152/japplphysiol.00460.2016

    Article  Google Scholar 

  • Muangritdech N, Hamlin MJ, Sawanyawisuth K, Prajumwongs P, Saengjan W, Wonnabussapawich P, Manimmanakorn N, Manimmanakorn A (2020) Hypoxic training improves blood pressure, nitric oxide and hypoxia-inducible factor-1 alpha in hypertensive patients. Eur J Appl Physiol 120(8):1815–1826. https://doi.org/10.1007/s00421-020-04410-9

    Article  CAS  PubMed  Google Scholar 

  • Ovchynnikova E, Aglialoro F, von Lindern M, van den Akker E (2018) The shape shifting story of reticulocyte maturation. Front Physiol 9:829–829. https://doi.org/10.3389/fphys.2018.00829

    Article  PubMed  PubMed Central  Google Scholar 

  • Patrician A, Dujić Ž, Spajić B, Drviš I, Ainslie PN (2021) Breath-hold diving-the physiology of diving deep and returning. Front Physiol. https://doi.org/10.3389/fphys.2021.639377

    Article  PubMed  PubMed Central  Google Scholar 

  • Pichon AP, Connes P, Robach P (2016) Effects of acute and chronic hematocrit modulations on blood viscosity in endurance athletes. Clin Hemorheol Microcirc 64(2):115–123

    Article  CAS  Google Scholar 

  • Pla R, Brocherie F, Le Garrec S, Richalet J-P (2020) Effectiveness of the hypoxic exercise test to predict altitude illness and performance at moderate altitude in high-level swimmers. Physiol Rep 8(8):e14390. https://doi.org/10.14814/phy2.14390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pohunek P (2021) Physiology of the Airways. In: Goldfarb S, Piccione J (eds) Diagnostic and interventional bronchoscopy in children. Springer International Publishing, Cham, pp 45–50. https://doi.org/10.1007/978-3-030-54924-4_5

  • Richalet J-P, Canoui-Poitrine F (2014) Pro: Hypoxic cardiopulmonary exercise testing identifies subjects at risk for severe high altitude illnesses. High Alt Med Biol 15(3):315–317

    Article  Google Scholar 

  • Rodriguez FA, Ventura JL, Casas M, Casas H, Pages T, Rama R, Ricart A, Palacios L, Viscor G (2000) Erythropoietin acute reaction and haematological adaptations to short, intermittent hypobaric hypoxia. Eur J Appl Physiol 82(3):170–177

    Article  CAS  Google Scholar 

  • Schnoder TM, Arreba-Tutusaus P, Griehl I, Bullinger L, Buschbeck M, Lane SW, Dohner K, Plass C, Lipka DB, Heidel FH, Fischer T (2015) Epo-induced erythroid maturation is dependent on Plcgamma1 signaling. Cell Death Differ 22(6):974–985

    Article  CAS  Google Scholar 

  • Semenza GL (2019) Pharmacologic targeting of hypoxia-inducible factors. Annu Rev Pharmacol Toxicol 59(1):379–403. https://doi.org/10.1146/annurev-pharmtox-010818-021637

    Article  CAS  PubMed  Google Scholar 

  • Serebrovskaya TV, Nosar VI, Bratus LV, Gavenauskas BL, Mankovska IM (2013) Tissue oxygenation and mitochondrial respiration under different modes of intermittent hypoxia. High Alt Med Biol 14(3):280–288

    Article  CAS  Google Scholar 

  • Siebenmann C, Dempsey JA (2020) Hypoxic training is not beneficial in elite athletes. Med Sci Sports Exerc 52(2):519–522

    Article  Google Scholar 

  • Tobin B, Costalat G, Renshaw GMC (2020) Intermittent not continuous hypoxia provoked haematological adaptations in healthy seniors: hypoxic pattern may hold the key. Eur J Appl Physiol 120(3):707–718

    Article  CAS  Google Scholar 

  • Treml B, Kleinsasser A, Hell T, Knotzer H, Wille M, Burtscher M (2020) Carry-over quality of pre-acclimatization to altitude elicited by intermittent hypoxia: a participant-blinded, randomized controlled trial on antedated acclimatization to altitude. Front Physiol 11:531

    Article  Google Scholar 

  • Verges S, Chacaroun S, Godin-Ribuot D, Baillieul S (2015) Hypoxic conditioning as a new therapeutic modality. Front Pediatr. https://doi.org/10.3389/fped.2015.00058

    Article  PubMed  PubMed Central  Google Scholar 

  • Viscor G, Torrella JR, Corral L, Ricart A, Javierre C, Pages T, Ventura JL (2018) Physiological and biological responses to short-term intermittent hypobaric hypoxia exposure: from sports and mountain medicine to new biomedical applications. Front Physiol 9:814–814. https://doi.org/10.3389/fphys.2018.00814

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang JS, Chen LY, Fu LL, Chen ML, Wong MK (2007) Effects of moderate and severe intermittent hypoxia on vascular endothelial function and haemodynamic control in sedentary men. Eur J Appl Physiol 100(2):127–135

    Article  CAS  Google Scholar 

  • Wehrlin JP, Marti B, Hallén J (2016) Hemoglobin mass and aerobic performance at moderate altitude in elite athletes. Adv Exp Med Biol 903:357–374. https://doi.org/10.1007/978-1-4899-7678-9_24

    Article  CAS  PubMed  Google Scholar 

  • West J, Schoene R, Luks A, Milledge J (2012) High altitude medicine and physiology 5E. CRC Press, Boca Raton

    Book  Google Scholar 

  • Wille M, Gatterer H, Mairer K, Philippe M, Schwarzenbacher H, Faulhaber M, Burtscher M (2012) Short-term intermittent hypoxia reduces the severity of acute mountain sickness. Scand J Med Sci Sports 22(5):1600–1838

    Article  Google Scholar 

  • Wojan F, Stray-Gundersen S, Nagel MJ, Lalande S (2021) Short exposure to intermittent hypoxia increases erythropoietin levels in healthy individuals. J Appl Physiol 130(6):1955–1960. https://doi.org/10.1152/japplphysiol.00941.2020

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Biomedtech Australia Pty. Ltd., the Heart Foundation Research Centre Griffith University and the Griffith Health Institute for generously supporting this independent investigation. We greatly appreciated the opportunity to borrow hypoxicators from Oleg Bassovitch, GO2Altitude®. We are grateful to the participants for their enthusiastic involvement in this study, to Taryn Mann for quantifying troponin T and to Dr. Mike Steele for statistical advice as well as to Dr. Glenn Harrison for insightful comments on early drafts of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gillian M. C. Renshaw.

Ethics declarations

Conflict of interest

The authors declare that there was no conflict of interest and that the results of the present study do not constitute endorsement of any specific brand of equipment for hypoxia delivery.

Additional information

Communicated by Guido Ferretti.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobin, B., Costalat, G. & Renshaw, G.M.C. Pre-acclimation to altitude in young adults: choosing a hypoxic pattern at sea level which provokes significant haematological adaptations. Eur J Appl Physiol 122, 395–407 (2022). https://doi.org/10.1007/s00421-021-04837-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-021-04837-8

Keywords

Navigation