Skip to main content
Log in

Caffeine, genetic variation and anaerobic performance in male athletes: a randomized controlled trial

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

The effect of caffeine on anaerobic performance is unclear and may differ depending on an individual’s genetics. The goal of this study was to determine whether caffeine influences anaerobic performance in a 30 s Wingate test, and if 14 single nucleotide polymorphisms (SNPs) in nine genes, associated with caffeine metabolism or response, modify caffeine’s effects.

Methods

Competitive male athletes (N = 100; 25 ± 4 years) completed the Wingate under three conditions: 0, 2, or 4 mg of caffeine per kg of body mass (mg kg−1), using a double-blinded, placebo-controlled design. Using saliva samples, participants were genotyped for the 14 SNPs. The outcomes were peak power (Watts [W]), average power (Watts [W]), and fatigue index (%).

Results

There was no main effect of caffeine on Wingate outcomes. One significant caffeine–gene interaction was observed for CYP1A2 (rs762551, p = 0.004) on average power. However, post hoc analysis showed no difference in caffeine’s effects within CYP1A2 genotypes for average power performance. No significant caffeine–gene interactions were observed for the remaining SNPs on peak power, average power and fatigue index.

Conclusion

Caffeine had no effect on anaerobic performance and variations in several genes did not modify any effects of caffeine.

Trial registration

This study was registered with clinicaltrials.gov (NCT02109783).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

This study was registered with clinicaltrials.gov on April 10, 2014 (NCT02109783). The datasets generated during and/or analyzed during the current study are not publicly available.

Code availability

Data was analyzed using the R (version 3.3.3) and RStudio (version 1.1.463) statistical packages.

Abbreviations

ANOVA:

Analysis of variance

ADRβ2:

β2 Adrenergic

COMT:

Catechol-O-methyltransferase

CNS:

Central nervous system

CYP1A2:

Cytochrome P450 1A2

VO2peak :

Maximal aerobic capacity

rpm:

Revolutions per minute

SNPs:

Single nucleotide polymorphisms

VSM:

Vascular smooth muscle

W:

Watts

WAnT:

Wingate anaerobic test

References

  • Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS, Weiss R, Cooper TB, Mann JJ, Van Heertum RL (2000) Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci 97(14):8104–8109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aguilar-Navarro M, Muñoz G, Salinero JJ, Muñoz-Guerra J, Fernández-Álvarez M, Plata MDM, Del Coso J (2019) Urine caffeine concentration in doping control samples from 2004 to 2015. Nutrients. https://doi.org/10.3390/nu11020286

    Article  PubMed  PubMed Central  Google Scholar 

  • Amin N et al (2012) Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM. Mol Psychiatry 17:1116–1129

    CAS  PubMed  Google Scholar 

  • Andersen LW, Mackenhauer J, Roberts JC, Berg KM, Cocchi MN, Donnino MW (2013) Etiology and therapeutic approach to elevated lactate. Mayo Clin Proc 88(10):1127–1140. https://doi.org/10.1016/j.mayocp.2013.06.012

    CAS  PubMed  Google Scholar 

  • Bangsbo J, Graham T, Johansen L, Saltin B (1994) Muscle lactate metabolism in recovery from intense exhaustive exercise: impact of light exercise. J Appl Physiol 77:1890–1895

    CAS  PubMed  Google Scholar 

  • Bar-Or O (1987) The Wingate anaerobic test. An update on methodology, reliability and validity. Sports Med 4:381–394. https://doi.org/10.2165/00007256-198704060-00001

    Article  CAS  PubMed  Google Scholar 

  • Baumgart D et al (1999) Augmented α-adrenergic constriction of atherosclerotic human coronary arteries. Circulation 99:2090–2097

    CAS  PubMed  Google Scholar 

  • Berger M, Gray JA, Roth BL (2009) The expanded biology of serotonin. Annu Rev Med 60:355–366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berthou F, Flinois J-P, Ratanasavanh D, Beaune P, Riche C, Guillouzo A (1991) Evidence for the involvement of several cytochromes P-450 in the first steps of caffeine metabolism by human liver microsomes. Drug Metab Dispos 19:561–567

    CAS  PubMed  Google Scholar 

  • Bhatia A, Lenchner JR, Saadabadi A (2020) Biochemistry, Dopamine Receptors. StatPearls [Internet]

  • Black A, Yang Q, Wen SW, Lalonde AB, Guilbert E, Fisher W (2009) Contraceptive use among Canadian women of reproductive age: results of a national survey. J Obstet Gynaecol Can 31:627–640

    PubMed  Google Scholar 

  • Broberg S, Sahlin K (1989) Adenine nucleotide degradation in human skeletal muscle during prolonged exercise. J Appl Physiol 67:116–122

    CAS  PubMed  Google Scholar 

  • Burke LM (2008) Caffeine and sports performance. Appl Physiol Nutr Metab 33:1319–1334. https://doi.org/10.1139/h08-130

    Article  CAS  PubMed  Google Scholar 

  • Burton DA, Stokes K, Hall GM (2004) Physiological effects of exercise. Contin Edu Anaesth Crit Care Pain 4:185–188

    Google Scholar 

  • Bylund DB, Blaxall HS, Iversen LJ, Caron MG, Lefkowitz RJ, Lomasney JW (1992) Pharmacological characteristics of alpha 2-adrenergic receptors: comparison of pharmacologically defined subtypes with subtypes identified by molecular cloning. Mol Pharmacol 42:1–5

    CAS  PubMed  Google Scholar 

  • Cohen J (1992) A power primer. Psychol Bull 112:155

    CAS  PubMed  Google Scholar 

  • Collomp K, Ahmaidi S, Audran M, Chanal JL, Préfaut C (1991) Effects of caffeine ingestion on performance and anaerobic metabolism during the Wingate test. Int J Sports Med 12:439–443. https://doi.org/10.1055/s-2007-1024710

    Article  CAS  PubMed  Google Scholar 

  • Collomp K, Ahmaidi S, Chatard JC, Audran M, Préfaut C (1992) Benefits of caffeine ingestion on sprint performance in trained and untrained swimmers. Eur J Appl Physiol Occup Physiol 64:377–380. https://doi.org/10.1007/bf00636227

    Article  CAS  PubMed  Google Scholar 

  • Cornelis MC, El-Sohemy A, Kabagambe EK, Campos H (2006) Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA 295:1135–1141

    CAS  PubMed  Google Scholar 

  • Costa F, Diedrich A, Johnson B, Sulur P, Farley G, Biaggioni I (2001) Adenosine, a metabolic trigger of the exercise pressor reflex in humans. Hypertension 37:917–922. https://doi.org/10.1161/01.hyp.37.3.917

    Article  CAS  PubMed  Google Scholar 

  • Daly JW (1982) Adenosine receptors: targets for future drugs. J Med Chem 25:197–207. https://doi.org/10.1021/jm00345a001

    Article  CAS  PubMed  Google Scholar 

  • Day Tasevski EL, Cahill L, Garofalo F, Eny K, El-Sohemy A (2009) Beta2-adrenergic receptor (ADRB2) genotype is associated with acute effects and withdrawal symptoms of caffeine. Fed Am Soc Exp Biol J 23:725

    Google Scholar 

  • Denden S, Bouden B, Haj Khelil A, Ben Chibani J, Hamdaoui MH (2016) Gender and ethnicity modify the association between the CYP1A2 rs762551 polymorphism and habitual coffee intake: evidence from a meta-analysis. Genet Mol Res. https://doi.org/10.4238/gmr.15027487

    Article  PubMed  Google Scholar 

  • Dishy V, Sofowora GG, Xie H-G, Kim RB, Byrne DW, Stein CM, Wood AJ (2001) The effect of common polymorphisms of the β2-adrenergic receptor on agonist-mediated vascular desensitization. N Engl J Med 345:1030–1035

    CAS  PubMed  Google Scholar 

  • Djordjevic N, Ghotbi R, Bertilsson L, Jankovic S, Aklillu E (2008) Induction of CYP1A2 by heavy coffee consumption in Serbs and Swedes. Eur J Clin Pharmacol 64:381–385

    CAS  PubMed  Google Scholar 

  • Doherty M, Smith PM (2005) Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Scand J Med Sci Sports 15:69–78. https://doi.org/10.1111/j.1600-0838.2005.00445.x

    Article  CAS  PubMed  Google Scholar 

  • Duncan MJ, Eyre E, Grgic J, Tallis J (2019) The effect of acute caffeine ingestion on upper and lower body anaerobic exercise performance. Eur J Sport Sci 19:1359–1366

    PubMed  Google Scholar 

  • Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88:1009–1086

    CAS  PubMed  Google Scholar 

  • Dunwiddie TV (1985) The physiological role of adenosine in the central nervous system. Int Rev Neurobiol 27:63–139. https://doi.org/10.1016/s0074-7742(08)60556-5

    Article  CAS  PubMed  Google Scholar 

  • Englert C, Bertrams A (2012) Anxiety, ego depletion, and sports performance. J Sport Exerc Psychol 34:580–599

    PubMed  Google Scholar 

  • Gardner SA, Martin TD, Barras M, Jenkins GD, Hahn GA (2005) Power output demands of elite track sprint cycling. Int J Perform Anal Sport 5:149–154

    Google Scholar 

  • Gellekink H, Muntjewerff J-W, Vermeulen SHHM, Hermus ARMM, Blom HJ, Heijer Md (2007) Catechol-O-methyltransferase genotype is associated with plasma total homocysteine levels and may increase venous thrombosis risk. Thromb Haemost 98:1226–1231

    CAS  PubMed  Google Scholar 

  • Ghotbi R, Christensen M, Roh H-K, Ingelman-Sundberg M, Aklillu E, Bertilsson L (2007) Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans. Eur J Clin Pharmacol 63:537–546

    CAS  PubMed  Google Scholar 

  • Giovannitti JA Jr, Thoms SM, Crawford JJ (2015) Alpha-2 adrenergic receptor agonists: a review of current clinical applications. Anesth Prog 62:31–38

    PubMed  PubMed Central  Google Scholar 

  • Grabe HJ, Spitzer C, Schwahn C, Marcinek A, Frahnow A, Barnow S, Lucht M, Freyberger HJ, John U, Wallaschofski H (2009) Serotonin transporter gene (SLC6A4) promoter polymorphisms and the susceptibility to posttraumatic stress disorder in the general population. Am J Psychiatry 166(8):926–933

    PubMed  Google Scholar 

  • Greer F, Morales J, Coles M (2006) Wingate performance and surface EMG frequency variables are not affected by caffeine ingestion. Appl Physiol Nutr Metab 31:597–603

    PubMed  Google Scholar 

  • Grgic J, Mikulic P (2020) Acute effects of caffeine supplementation on resistance exercise, jumping, and Wingate performance: no influence of habitual caffeine intake. Eur J Sport Sci 21:1–29

    Google Scholar 

  • Grgic J, Pickering C, Bishop DJ, Del Coso J, Schoenfeld BJ, Tinsley GM, Pedisic Z (2020) ADOR2A C allele carriers exhibit ergogenic responses to caffeine supplementation. Nutrients 1:2. https://doi.org/10.3390/nu12030741

    Article  CAS  Google Scholar 

  • Guest N, Corey P, Vescovi J, El-Sohemy A (2018) Caffeine, CYP1A2 genotype, and endurance performance in athletes. Med Sci Sports Exerc 50:1570–1578. https://doi.org/10.1249/mss.0000000000001596

    Article  CAS  PubMed  Google Scholar 

  • Guest NS et al (2021) International society of sports nutrition position stand: caffeine and exercise performance. J Int Soc Sports Nutr 18:1–37

    PubMed  PubMed Central  Google Scholar 

  • Guest NS, Corey P, Tyrrell PN, El-Sohemy A (2020) Effect of caffeine on endurance performance in athletes may depend on HTR2A and CYP1A2 genotypes. J Strength Cond Res:1–7

  • Higgins JP, Babu KM (2013) Caffeine reduces myocardial blood flow during exercise. Am J Med 126:730.e731-738. https://doi.org/10.1016/j.amjmed.2012.12.023

    Article  CAS  Google Scholar 

  • Hirvonen M, Laakso A, Någren K, Rinne J, Pohjalainen T, Hietala J (2005) Erratum: C957T polymorphism of the dopamine D2 receptor (DRD2) gene affects striatal DRD2 availability in vivo. Mol psychiatry 10(9):889

    CAS  Google Scholar 

  • Hukkanen J, Jacob P III, Peng M, Dempsey D, Benowitz NL (2011) Effect of nicotine on cytochrome P450 1A2 activity. Br J Clin Pharmacol 72:836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inbar O, Bar-Or O, Skinner JS (1996) The Wingate anaerobic test. John Wiley & Sons, Hoboken

    Google Scholar 

  • Insel PA (1996) Adrenergic receptors—evolving concepts and clinical implications. N Engl J Med 334:580–585

    CAS  PubMed  Google Scholar 

  • Josse AR, Da Costa LA, Campos H, El-Sohemy A (2012) Associations between polymorphisms in the AHR and CYP1A1-CYP1A2 gene regions and habitual caffeine consumption. Am J Clin Nutr 96:665–671. https://doi.org/10.3945/ajcn.112.038794

    Article  PubMed  Google Scholar 

  • Kamal S, Lappin SL (2019) Biochemistry. Catecholamine Degradation. StatPearls Publishing, Treasure Island

    Google Scholar 

  • Khait VD, Huang Y-Y, Zalsman G, Oquendo MA, Brent DA, Harkavy-Friedman JM, Mann JJ (2005) Association of serotonin 5-HT 2A receptor binding and the T102C polymorphism in depressed and healthy caucasian subjects. Neuropsychopharmacology 30(1):166–172

    CAS  PubMed  Google Scholar 

  • Klimek V, Schenck JE, Han H, Stockmeier CA, Ordway GA (2002) Dopaminergic abnormalities in amygdaloid nuclei in major depression: a postmortem study. Biol psychiatry 52(7):740–748

    CAS  PubMed  Google Scholar 

  • Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484. https://doi.org/10.1046/j.1471-4159.2001.00607.x

    Article  CAS  PubMed  Google Scholar 

  • Lesch K-P, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S, Benjamin J, Müller CR, Hamer DH, Murphy DL (1996) Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274(5292):1527–1531

    CAS  PubMed  Google Scholar 

  • Lynch T, Price AL (2007) The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am fam physician 76(3):391–396

    PubMed  Google Scholar 

  • Miyagi WE, Bertuzzi RC, Nakamura FY, de Poli RAB, Zagatto AM (2018) Effects of caffeine ingestion on anaerobic capacity in a single supramaximal cycling test. Front Nutr 5:86. https://doi.org/10.3389/fnut.2018.00086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muszkat M et al (2010) Desensitization of vascular response in vivo: contribution of genetic variation in the [alpha]2B-adrenergic receptor subtype. J Hypertens 28:278–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nardin M, Verdoia M, Negro F, Suryapranata H, Khedi E, De Luca G (2020) Relationship between adenosine A2a receptor polymorphism rs5751876 and fractional flow reserve during percutaneous coronary intervention. Heart Vessels 35:1349–1359

    PubMed  Google Scholar 

  • Overgaard M et al (2012) Hypoxia and exercise provoke both lactate release and lactate oxidation by the human brain. FASEB J 26:3012–3020. https://doi.org/10.1096/fj.11-191999

    Article  CAS  PubMed  Google Scholar 

  • Palatini P et al (2009) CYP1A2 genotype modifies the association between coffee intake and the risk of hypertension. J Hypertens 27:1594–1601

    CAS  PubMed  Google Scholar 

  • Paton C, Costa V, Guglielmo L (2015) Effects of caffeine chewing gum on race performance and physiology in male and female cyclists. J Sports Sci 33:1076–1083. https://doi.org/10.1080/02640414.2014.984752

    Article  PubMed  Google Scholar 

  • Pickering C, Grgic J (2019) Caffeine and exercise: What next? Sports Med 49:1–24

    PubMed  Google Scholar 

  • Porras G, Di Matteo V, Fracasso C, Lucas G, De Deurwaerdère P, Caccia S, Esposito E, Spampinato U (2002) 5-HT 2A and 5-HT 2C/2B receptor subtypes modulate dopamine release induced in vivo by amphetamine and morphine in both the rat nucleus accumbens and striatum. Neuropsychopharmacology 26(3):311–324

    CAS  PubMed  Google Scholar 

  • Reihsaus E, Innis M, MacIntyre N, Liggett SB (1993) Mutations in the gene encoding for the 132-adrenergic receptor in normal and asthmatic subjects. Am J Respir Cell Mol Biol 8:334–339

    CAS  PubMed  Google Scholar 

  • Robertson D, Frölich JC, Carr RK, Watson JT, Hollifield JW, Shand DG, Oates JA (1978) Effects of caffeine on plasma renin activity, catecholamines and blood pressure. N Engl J Med 298:181–186

    CAS  PubMed  Google Scholar 

  • Salinero JJ et al (2017) CYP1A2 genotype variations do not modify the benefits and drawbacks of caffeine during exercise: a pilot study. Nutrients. https://doi.org/10.3390/nu9030269

    Article  PubMed  PubMed Central  Google Scholar 

  • San Juan AF et al (2019) Caffeine supplementation improves anaerobic performance and neuromuscular efficiency and fatigue in olympic-level boxers. Nutrients. https://doi.org/10.3390/nu11092120

    Article  PubMed  PubMed Central  Google Scholar 

  • Skinner TL, Jenkins DG, Coombes JS, Taaffe DR, Leveritt MD (2010) Dose response of caffeine on 2000-m rowing performance. Med Sci Sports Exerc 42:571–576. https://doi.org/10.1249/MSS.0b013e3181b6668b

    Article  CAS  PubMed  Google Scholar 

  • Smith CR, Eberly J, Steckbeck RJ, Wright MR, Shenk B, Shin M, Kieffer HS (2019) The influence of caffeine and the− 163 A> C CYP1A2 polymorphism on peak and mean power during a Wingate test. FASEB J 33:839

    Google Scholar 

  • Snyder EM, Johnson BD, Joyner MJ (2008) Genetics of β2-adrenergic receptors and the cardiopulmonary response to exercise. Exerc Sport Sci Rev 36:98

    PubMed  PubMed Central  Google Scholar 

  • van Dijk R, Ties D, Kuijpers D, van der Harst P, Oudkerk M (2018) Effects of caffeine on myocardial blood flow: a systematic review. Nutrients. https://doi.org/10.3390/nu10081083

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkins BW, Pike TL, Martin EA, Curry TB, Ceridon ML, Joyner MJ (2008) Exercise intensity-dependent contribution of β-adrenergic receptor-mediated vasodilatation in hypoxic humans. J Physiol 586:1195–1205

    CAS  PubMed  Google Scholar 

  • Wise RA (2005) Forebrain substrates of reward and motivation. J Comp Neurol 493(1):115–121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Womack CJ et al (2012) The influence of a CYP1A2 polymorphism on the ergogenic effects of caffeine. J Int Soc Sports Nutr 9:7. https://doi.org/10.1186/1550-2783-9-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolf K, Bidwell WK, Carlson AG (2008) The effect of caffeine as an ergogenic aid in anaerobic exercise. Int J Sport Nutr Exerc Metab 18:412–429. https://doi.org/10.1123/ijsnem.18.4.412

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Nakazato Y, Ohga A (1989) The mode of action of caffeine on catecholamine release from perfused adrenal glands of cat. Br J Pharmacol 98:351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Stackman RW Jr (2015) The role of serotonin 5-HT2A receptors in memory and cognition. Front Pharmacol 6:225

    PubMed  PubMed Central  Google Scholar 

  • Zupan MF, Arata AW, Dawson LH, Wile AL, Payn TL, Hannon ME (2009) Wingate anaerobic test peak power and anaerobic capacity classifications for men and women intercollegiate athletes. J Strength Cond Res 23:2598–2604

    PubMed  Google Scholar 

Download references

Funding

Funding support for this study was provided by the Canadian Foundation for Dietetic Research, Canadian Institute for Health Research, Coca-Cola company, Mitacs and Nutrigenomix Inc.

Author information

Authors and Affiliations

Authors

Contributions

MS wrote the first draft and contributed to the literature search, conducted the statistical analyses, and managed all aspects of manuscript preparation and submission. NG collected all of the initial data and NG and AE-S contributed to the design of the study, data screening and extraction, and contributed to the writing and editing of the manuscript. NG and AE-S secured funding. PT contributed to data analyses and editing of the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Ahmed El-Sohemy.

Ethics declarations

Conflict of interest

AE-S is the Founder and holds shares in Nutrigenomix Inc. NG is on the Science Advisory Board of Nutrigenomix Inc. MS and PT declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

This trial was approved by the University of Toronto Institutional Review Board.

Consent to participate

Written informed consent was obtained from all participants. Participants were aware of the potential benefits and risks of the trial prior to signing consent forms and participating in the study.

Consent for publication

Patients signed informed consent regarding publishing their data and photographs.

Additional information

Communicated by Kirsty Elliott sale.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sicova, M., Guest, N.S., Tyrrell, P.N. et al. Caffeine, genetic variation and anaerobic performance in male athletes: a randomized controlled trial. Eur J Appl Physiol 121, 3499–3513 (2021). https://doi.org/10.1007/s00421-021-04799-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-021-04799-x

Keywords

Navigation